A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces
Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 231-241.

Voir la notice de l'article provenant de la source EMS Press

Using a result of Harer, we prove certain upper bounds for the homotopical/cohomological dimension of the moduli spaces of Riemann surfaces of compact type, of Riemann surfaces with rational tails and of Riemann surfaces with at most k rational components. These bounds would follow from conjectures of Looijenga and Roth-Vakil.
DOI : 10.4171/jems/109
Classification : 32-XX, 55-XX, 00-XX
Keywords: Reaction-diffusion-convection equation, selfsimilar solution, blow-up on the boundary
@article{JEMS_2008_10_1_a7,
     author = {Gabriele Mondello},
     title = {A remark on the homotopical dimension of some moduli spaces of stable {Riemann} surfaces},
     journal = {Journal of the European Mathematical Society},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4171/jems/109},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/109/}
}
TY  - JOUR
AU  - Gabriele Mondello
TI  - A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 231
EP  - 241
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/109/
DO  - 10.4171/jems/109
ID  - JEMS_2008_10_1_a7
ER  - 
%0 Journal Article
%A Gabriele Mondello
%T A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces
%J Journal of the European Mathematical Society
%D 2008
%P 231-241
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/109/
%R 10.4171/jems/109
%F JEMS_2008_10_1_a7
Gabriele Mondello. A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces. Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 231-241. doi : 10.4171/jems/109. http://geodesic.mathdoc.fr/articles/10.4171/jems/109/

Cité par Sources :