Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed
Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 105-132.

Voir la notice de l'article provenant de la source EMS Press

We consider a reaction-diffusion-convection equation on the halfline (0,∞) with the zero Dirichlet boundary condition at x=0. We find a positive selfsimilar solution u which blows up in a finite time T at x=0 while u(x,T) remains bounded for x>0.
DOI : 10.4171/jems/105
Classification : 35-XX, 34-XX, 00-XX
Keywords: Reaction-diffusion-convection equation, selfsimilar solution, blow-up on the boundary
@article{JEMS_2008_10_1_a3,
     author = {Marek Fila and Michael Winkler},
     title = {Single-point blow-up on the boundary where the zero {Dirichlet} boundary condition is imposed},
     journal = {Journal of the European Mathematical Society},
     pages = {105--132},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4171/jems/105},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/105/}
}
TY  - JOUR
AU  - Marek Fila
AU  - Michael Winkler
TI  - Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 105
EP  - 132
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/105/
DO  - 10.4171/jems/105
ID  - JEMS_2008_10_1_a3
ER  - 
%0 Journal Article
%A Marek Fila
%A Michael Winkler
%T Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed
%J Journal of the European Mathematical Society
%D 2008
%P 105-132
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/105/
%R 10.4171/jems/105
%F JEMS_2008_10_1_a3
Marek Fila; Michael Winkler. Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed. Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 105-132. doi : 10.4171/jems/105. http://geodesic.mathdoc.fr/articles/10.4171/jems/105/

Cité par Sources :