Semiclassical states for weakly coupled nonlinear Schrödinger systems
Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 47-71.

Voir la notice de l'article provenant de la source EMS Press

We consider systems of weakly coupled Schrödinger equations with nonconstant potentials and we investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least energy solutions to concentrate.
DOI : 10.4171/jems/103
Classification : 34-XX, 35-XX, 00-XX
Keywords: Weakly coupled nonlinear Schrödinger systems, concentration phenomena, semiclassical limit, ground states, critical point theory, Clarke's subdifferential
@article{JEMS_2008_10_1_a1,
     author = {Eugenio Montefusco and Benedetta Pellacci and Marco Squassina},
     title = {Semiclassical states for weakly coupled nonlinear {Schr\"odinger} systems},
     journal = {Journal of the European Mathematical Society},
     pages = {47--71},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4171/jems/103},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/103/}
}
TY  - JOUR
AU  - Eugenio Montefusco
AU  - Benedetta Pellacci
AU  - Marco Squassina
TI  - Semiclassical states for weakly coupled nonlinear Schrödinger systems
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 47
EP  - 71
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/103/
DO  - 10.4171/jems/103
ID  - JEMS_2008_10_1_a1
ER  - 
%0 Journal Article
%A Eugenio Montefusco
%A Benedetta Pellacci
%A Marco Squassina
%T Semiclassical states for weakly coupled nonlinear Schrödinger systems
%J Journal of the European Mathematical Society
%D 2008
%P 47-71
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/103/
%R 10.4171/jems/103
%F JEMS_2008_10_1_a1
Eugenio Montefusco; Benedetta Pellacci; Marco Squassina. Semiclassical states for weakly coupled nonlinear Schrödinger systems. Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 47-71. doi : 10.4171/jems/103. http://geodesic.mathdoc.fr/articles/10.4171/jems/103/

Cité par Sources :