Quasi-periodic solutions of nonlinear random Schrödinger equations
Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 1-45.

Voir la notice de l'article provenant de la source EMS Press

In this paper, let Σ⊂R6 be a compact convex hypersurface. We prove that if Σ carries only finitely many geometrically distinct closed characteristics, then at least two of them must possess irrational mean indices. Moreover, if Σ carries exactly three geometrically distinct closed characteristics, then at least two of them must be elliptic.
DOI : 10.4171/jems/102
Classification : 58-XX, 34-XX, 37-XX, 00-XX
Keywords: Compact convex hypersurfaces, closed characteristics, Hamiltonian systems, Morse theory, mean index identity, stability
@article{JEMS_2008_10_1_a0,
     author = {Jean Bourgain and Wei-Min Wang},
     title = {Quasi-periodic solutions of nonlinear random {Schr\"odinger} equations},
     journal = {Journal of the European Mathematical Society},
     pages = {1--45},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4171/jems/102},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/102/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Wei-Min Wang
TI  - Quasi-periodic solutions of nonlinear random Schrödinger equations
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 1
EP  - 45
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/102/
DO  - 10.4171/jems/102
ID  - JEMS_2008_10_1_a0
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Wei-Min Wang
%T Quasi-periodic solutions of nonlinear random Schrödinger equations
%J Journal of the European Mathematical Society
%D 2008
%P 1-45
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/102/
%R 10.4171/jems/102
%F JEMS_2008_10_1_a0
Jean Bourgain; Wei-Min Wang. Quasi-periodic solutions of nonlinear random Schrödinger equations. Journal of the European Mathematical Society, Tome 10 (2008) no. 1, pp. 1-45. doi : 10.4171/jems/102. http://geodesic.mathdoc.fr/articles/10.4171/jems/102/

Cité par Sources :