Birational geometry of the Mukai system of rank two and genus two
Documenta mathematica, Tome 27 (2022), pp. 2691-2720 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Using the techniques of Bayer–Macrì, we determine the walls in the movable cone of the Mukai system of rank two for a general K3 surface S of genus two. We study the (essentially unique) birational map to S[5] and decompose it into a sequence of flops. We give an interpretation of the exceptional loci in terms of Brill–Noether loci.
DOI : 10.4171/dm/x39
Classification : 14E05, 14E30, 14H51, 53D30
Mots-clés : irreducible holomorphic symplectic manifolds, birational models, Mukai system
@article{10_4171_dm_x39,
     author = {Isabell Hellmann},
     title = {Birational geometry of the {Mukai} system of rank two and genus two},
     journal = {Documenta mathematica},
     pages = {2691--2720},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x39},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x39/}
}
TY  - JOUR
AU  - Isabell Hellmann
TI  - Birational geometry of the Mukai system of rank two and genus two
JO  - Documenta mathematica
PY  - 2022
SP  - 2691
EP  - 2720
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x39/
DO  - 10.4171/dm/x39
ID  - 10_4171_dm_x39
ER  - 
%0 Journal Article
%A Isabell Hellmann
%T Birational geometry of the Mukai system of rank two and genus two
%J Documenta mathematica
%D 2022
%P 2691-2720
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x39/
%R 10.4171/dm/x39
%F 10_4171_dm_x39
Isabell Hellmann. Birational geometry of the Mukai system of rank two and genus two. Documenta mathematica, Tome 27 (2022), pp. 2691-2720. doi: 10.4171/dm/x39

Cité par Sources :