$\mathbb{A}^1$-connected components of classifying spaces and purity for torsors
Documenta mathematica, Tome 27 (2022), pp. 2657-2689
Cet article a éte moissonné depuis la source EMS Press
In this paper, we study the Nisnevich sheafification Heˊt1(G) of the presheaf associating to a smooth scheme the set of isomorphism classes of G-torsors, for a reductive group G. We show that if G-torsors on affine lines are extended, then Heˊt1(G) is homotopy invariant and show that the sheaf is unramified if and only if Nisnevich-local purity holds for G-torsors. We also identify the sheaf Heˊt1(G) with the sheaf of A1-connected components of the classifying space BeˊtG. This establishes the homotopy invariance of the sheaves of components as conjectured by Morel. It moreover provides a computation of the sheaf of A1-connected components in terms of unramified G-torsors over function fields whenever Nisnevich-local purity holds for G-torsors.
Classification :
14F42, 14L15, 19E15
Mots-clés : classifying spaces, torsors, motivic homotopy theory
Mots-clés : classifying spaces, torsors, motivic homotopy theory
@article{10_4171_dm_x38,
author = {Girish Kulkarni and Matthias Wendt and Elden Elmanto},
title = {$\mathbb{A}^1$-connected components of classifying spaces and purity for torsors},
journal = {Documenta mathematica},
pages = {2657--2689},
year = {2022},
volume = {27},
doi = {10.4171/dm/x38},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x38/}
}
TY - JOUR
AU - Girish Kulkarni
AU - Matthias Wendt
AU - Elden Elmanto
TI - $\mathbb{A}^1$-connected components of classifying spaces and purity for torsors
JO - Documenta mathematica
PY - 2022
SP - 2657
EP - 2689
VL - 27
UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/x38/
DO - 10.4171/dm/x38
ID - 10_4171_dm_x38
ER -
Girish Kulkarni; Matthias Wendt; Elden Elmanto. $\mathbb{A}^1$-connected components of classifying spaces and purity for torsors. Documenta mathematica, Tome 27 (2022), pp. 2657-2689. doi: 10.4171/dm/x38
Cité par Sources :