Singularities in the weak turbulence regime for the quintic Schrödinger equation
Documenta mathematica, Tome 27 (2022), pp. 2491-2561 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

In this paper, we discuss the problem of derivation of kinetic equations from the theory of weak turbulence for the quintic Schrödinger equation. We study the quintic Schrödinger equation on LT, with L≫1 and with a non-linearity of size ε≪1. We consider the correlations f(T) of the Fourier coefficients of the solution at times t=Tε−2 when ε→0 and L→∞. Our results can be summed up in the following way: there exists a regime for ε and L such that for T dyadic, f(T) has the form expected from the Physics literature for kinetic regimes, but such that f has an infinite number of discontinuity points. This discontinuity appears in the context of finite-box effects.
DOI : 10.4171/dm/x35
Classification : 35Q35, 35Q41
Mots-clés : Schrödinger equations, discrete weak turbulence, Wick renormalisation
@article{10_4171_dm_x35,
     author = {Anne-Sophie de Suzzoni},
     title = {Singularities in the weak turbulence regime for the quintic {Schr\"odinger} equation},
     journal = {Documenta mathematica},
     pages = {2491--2561},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x35},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x35/}
}
TY  - JOUR
AU  - Anne-Sophie de Suzzoni
TI  - Singularities in the weak turbulence regime for the quintic Schrödinger equation
JO  - Documenta mathematica
PY  - 2022
SP  - 2491
EP  - 2561
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x35/
DO  - 10.4171/dm/x35
ID  - 10_4171_dm_x35
ER  - 
%0 Journal Article
%A Anne-Sophie de Suzzoni
%T Singularities in the weak turbulence regime for the quintic Schrödinger equation
%J Documenta mathematica
%D 2022
%P 2491-2561
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x35/
%R 10.4171/dm/x35
%F 10_4171_dm_x35
Anne-Sophie de Suzzoni. Singularities in the weak turbulence regime for the quintic Schrödinger equation. Documenta mathematica, Tome 27 (2022), pp. 2491-2561. doi: 10.4171/dm/x35

Cité par Sources :