Crystalline lifts and a variant of the Steinberg–Winter theorem
Documenta mathematica, Tome 27 (2022), pp. 2441-2468
Cet article a éte moissonné depuis la source EMS Press
Let K/Qp be a finite extension. For all irreducible representations ρˉ:GK→G(Fˉp) valued in a general reductive group G, we construct crystalline lifts of ρˉ which are Hodge–Tate regular. We also discuss rationality questions. We prove a variant of the Steinberg-Winter theorem along the way.
Classification :
11S20, 14L10
Mots-clés : Galois representations, G-complete reducibility
Mots-clés : Galois representations, G-complete reducibility
@article{10_4171_dm_x33,
author = {Zhongyipan Lin},
title = {Crystalline lifts and a variant of the {Steinberg{\textendash}Winter} theorem},
journal = {Documenta mathematica},
pages = {2441--2468},
year = {2022},
volume = {27},
doi = {10.4171/dm/x33},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x33/}
}
Zhongyipan Lin. Crystalline lifts and a variant of the Steinberg–Winter theorem. Documenta mathematica, Tome 27 (2022), pp. 2441-2468. doi: 10.4171/dm/x33
Cité par Sources :