Special triple covers of algebraic surfaces
Documenta mathematica, Tome 27 (2022), pp. 2301-2332
Cet article a éte moissonné depuis la source EMS Press
We study special triple covers f:T→S of algebraic surfaces, where the Tschirnhausen bundle E=(f∗OT/OS)∨ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.
Classification :
14J10, 14J29
Mots-clés : K3 surfaces, triple covers, surface of general type
Mots-clés : K3 surfaces, triple covers, surface of general type
@article{10_4171_dm_x30,
author = {Nicolina Istrati and Piotr Pokora and S\"onke Rollenske},
title = {Special triple covers of algebraic surfaces},
journal = {Documenta mathematica},
pages = {2301--2332},
year = {2022},
volume = {27},
doi = {10.4171/dm/x30},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x30/}
}
Nicolina Istrati; Piotr Pokora; Sönke Rollenske. Special triple covers of algebraic surfaces. Documenta mathematica, Tome 27 (2022), pp. 2301-2332. doi: 10.4171/dm/x30
Cité par Sources :