Special triple covers of algebraic surfaces
Documenta mathematica, Tome 27 (2022), pp. 2301-2332 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We study special triple covers f:T→S of algebraic surfaces, where the Tschirnhausen bundle E=(f∗​OT​/OS​)∨ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.
DOI : 10.4171/dm/x30
Classification : 14J10, 14J29
Mots-clés : K3 surfaces, triple covers, surface of general type
@article{10_4171_dm_x30,
     author = {Nicolina Istrati and Piotr Pokora and S\"onke Rollenske},
     title = {Special triple covers of algebraic surfaces},
     journal = {Documenta mathematica},
     pages = {2301--2332},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x30},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x30/}
}
TY  - JOUR
AU  - Nicolina Istrati
AU  - Piotr Pokora
AU  - Sönke Rollenske
TI  - Special triple covers of algebraic surfaces
JO  - Documenta mathematica
PY  - 2022
SP  - 2301
EP  - 2332
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x30/
DO  - 10.4171/dm/x30
ID  - 10_4171_dm_x30
ER  - 
%0 Journal Article
%A Nicolina Istrati
%A Piotr Pokora
%A Sönke Rollenske
%T Special triple covers of algebraic surfaces
%J Documenta mathematica
%D 2022
%P 2301-2332
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x30/
%R 10.4171/dm/x30
%F 10_4171_dm_x30
Nicolina Istrati; Piotr Pokora; Sönke Rollenske. Special triple covers of algebraic surfaces. Documenta mathematica, Tome 27 (2022), pp. 2301-2332. doi: 10.4171/dm/x30

Cité par Sources :