Second class particles and limit shapes of evacuation and sliding paths for random tableaux.
Documenta mathematica, Tome 27 (2022), pp. 2183-2273
Cet article a éte moissonné depuis la source EMS Press
We investigate two closely related setups. In the first one we consider a TASEP-style system of particles with specified initial and final configurations. The probability of each history of the system is assumed to be equal. We show that the rescaled trajectory of the second class particle converges (as the size of the system tends to infinity) to a random arc of an ellipse.
Classification :
05E10, 60C05, 60K35, 82C22
Mots-clés : second class particles, interacting particle systems, TASEP, random Young tableaux, limit shape, jeu de taquin, promotion, Schützenberger's evacuation, square Young tableaux
Mots-clés : second class particles, interacting particle systems, TASEP, random Young tableaux, limit shape, jeu de taquin, promotion, Schützenberger's evacuation, square Young tableaux
@article{10_4171_dm_x28,
author = {{\L}ukasz Ma\'slanka and Piotr \'Sniady},
title = {Second class particles and limit shapes of evacuation and sliding paths for random tableaux.},
journal = {Documenta mathematica},
pages = {2183--2273},
year = {2022},
volume = {27},
doi = {10.4171/dm/x28},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x28/}
}
TY - JOUR AU - Łukasz Maślanka AU - Piotr Śniady TI - Second class particles and limit shapes of evacuation and sliding paths for random tableaux. JO - Documenta mathematica PY - 2022 SP - 2183 EP - 2273 VL - 27 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/x28/ DO - 10.4171/dm/x28 ID - 10_4171_dm_x28 ER -
Łukasz Maślanka; Piotr Śniady. Second class particles and limit shapes of evacuation and sliding paths for random tableaux.. Documenta mathematica, Tome 27 (2022), pp. 2183-2273. doi: 10.4171/dm/x28
Cité par Sources :