Second class particles and limit shapes of evacuation and sliding paths for random tableaux.
Documenta mathematica, Tome 27 (2022), pp. 2183-2273 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We investigate two closely related setups. In the first one we consider a TASEP-style system of particles with specified initial and final configurations. The probability of each history of the system is assumed to be equal. We show that the rescaled trajectory of the second class particle converges (as the size of the system tends to infinity) to a random arc of an ellipse.
DOI : 10.4171/dm/x28
Classification : 05E10, 60C05, 60K35, 82C22
Mots-clés : second class particles, interacting particle systems, TASEP, random Young tableaux, limit shape, jeu de taquin, promotion, Schützenberger's evacuation, square Young tableaux
@article{10_4171_dm_x28,
     author = {{\L}ukasz Ma\'slanka and Piotr \'Sniady},
     title = {Second class particles and limit shapes of evacuation and sliding paths for random tableaux.},
     journal = {Documenta mathematica},
     pages = {2183--2273},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x28},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x28/}
}
TY  - JOUR
AU  - Łukasz Maślanka
AU  - Piotr Śniady
TI  - Second class particles and limit shapes of evacuation and sliding paths for random tableaux.
JO  - Documenta mathematica
PY  - 2022
SP  - 2183
EP  - 2273
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x28/
DO  - 10.4171/dm/x28
ID  - 10_4171_dm_x28
ER  - 
%0 Journal Article
%A Łukasz Maślanka
%A Piotr Śniady
%T Second class particles and limit shapes of evacuation and sliding paths for random tableaux.
%J Documenta mathematica
%D 2022
%P 2183-2273
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x28/
%R 10.4171/dm/x28
%F 10_4171_dm_x28
Łukasz Maślanka; Piotr Śniady. Second class particles and limit shapes of evacuation and sliding paths for random tableaux.. Documenta mathematica, Tome 27 (2022), pp. 2183-2273. doi: 10.4171/dm/x28

Cité par Sources :