The homotopy type of the topological cobordism category
Documenta mathematica, Tome 27 (2022), pp. 2107-2182
Cet article a éte moissonné depuis la source EMS Press
We define a cobordism category of topological manifolds and prove that if d=4 its classifying space is weakly equivalent to Ω∞−1MTTop(d), where MTTop(d) is the Thom spectrum of the inverse of the canonical bundle over BTop(d). We also give versions for manifolds with tangential structures and/or boundary. The proof uses smoothing theory and excision in the tangential structure to reduce the statement to the computation of the homotopy type of smooth cobordism categories due to Galatius–Madsen–Tillman–Weiss.
Classification :
55R40, 57N70, 58D05
Mots-clés : cobordism categories, topological manifolds
Mots-clés : cobordism categories, topological manifolds
@article{10_4171_dm_x27,
author = {Mauricio Gomez Lopez and Alexander Kupers},
title = {The homotopy type of the topological cobordism category},
journal = {Documenta mathematica},
pages = {2107--2182},
year = {2022},
volume = {27},
doi = {10.4171/dm/x27},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x27/}
}
Mauricio Gomez Lopez; Alexander Kupers. The homotopy type of the topological cobordism category. Documenta mathematica, Tome 27 (2022), pp. 2107-2182. doi: 10.4171/dm/x27
Cité par Sources :