Integrality of twisted $L$-values of elliptic curves
Documenta mathematica, Tome 27 (2022), pp. 2041-2066
Cet article a éte moissonné depuis la source EMS Press
Under suitable, fairly weak hypotheses on an elliptic curve E/Q and a primitive non-trivial Dirichlet character χ, we show that the algebraic L-value L(E,χ) at s=1 is an algebraic integer. For instance, for semistable curves L(E,χ) is integral whenever E admits no isogenies defined over Q. Moreover we give examples illustrating that our hypotheses are necessary for integrality to hold.
Classification :
11F67, 11G05, 11G40
Mots-clés : elliptic curves, L-functions, modular symbols
Mots-clés : elliptic curves, L-functions, modular symbols
@article{10_4171_dm_x25,
author = {Hanneke Wiersema and Christian Wuthrich},
title = {Integrality of twisted $L$-values of elliptic curves},
journal = {Documenta mathematica},
pages = {2041--2066},
year = {2022},
volume = {27},
doi = {10.4171/dm/x25},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x25/}
}
Hanneke Wiersema; Christian Wuthrich. Integrality of twisted $L$-values of elliptic curves. Documenta mathematica, Tome 27 (2022), pp. 2041-2066. doi: 10.4171/dm/x25
Cité par Sources :