Integrality of twisted $L$-values of elliptic curves
Documenta mathematica, Tome 27 (2022), pp. 2041-2066 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Under suitable, fairly weak hypotheses on an elliptic curve E/Q and a primitive non-trivial Dirichlet character χ, we show that the algebraic L-value L(E,χ) at s=1 is an algebraic integer. For instance, for semistable curves L(E,χ) is integral whenever E admits no isogenies defined over Q. Moreover we give examples illustrating that our hypotheses are necessary for integrality to hold.
DOI : 10.4171/dm/x25
Classification : 11F67, 11G05, 11G40
Mots-clés : elliptic curves, L-functions, modular symbols
@article{10_4171_dm_x25,
     author = {Hanneke Wiersema and Christian Wuthrich},
     title = {Integrality of twisted $L$-values of elliptic curves},
     journal = {Documenta mathematica},
     pages = {2041--2066},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x25},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x25/}
}
TY  - JOUR
AU  - Hanneke Wiersema
AU  - Christian Wuthrich
TI  - Integrality of twisted $L$-values of elliptic curves
JO  - Documenta mathematica
PY  - 2022
SP  - 2041
EP  - 2066
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x25/
DO  - 10.4171/dm/x25
ID  - 10_4171_dm_x25
ER  - 
%0 Journal Article
%A Hanneke Wiersema
%A Christian Wuthrich
%T Integrality of twisted $L$-values of elliptic curves
%J Documenta mathematica
%D 2022
%P 2041-2066
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x25/
%R 10.4171/dm/x25
%F 10_4171_dm_x25
Hanneke Wiersema; Christian Wuthrich. Integrality of twisted $L$-values of elliptic curves. Documenta mathematica, Tome 27 (2022), pp. 2041-2066. doi: 10.4171/dm/x25

Cité par Sources :