Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
Documenta mathematica, Tome 27 (2022), pp. 1985-2040
Cet article a éte moissonné depuis la source EMS Press
We discuss (i) a quantized version of the Jordan decomposition theorem for a complex Borel measure on a compact Hausdorff space, namely, the more general problem of decomposing a general noncommutative kernel (a quantization of the standard notion of kernel function) as a linear combination of completely positive noncommutative kernels (a quantization of the standard notion of positive definite kernel). Other special cases of (i) include: the problem of decomposing a general operator-valued kernel function as a linear combination of positive kernels (not always possible), of decomposing a general bounded linear Hilbert-space operator as a linear combination of positive linear operators (always possible), of decomposing a completely bounded linear map from a C∗-algebra A to an injective C∗-algebra L(Y) as a linear combination of completely positive maps from A to L(Y) (always possible). We also discuss (ii) a noncommutative kernel generalization of the Arveson extension theorem (any completely positive map φ from an operator system S to an injective C∗-algebra L(Y) can be extended to a completely positive map φe from a C∗-algebra containing S to L(Y)), and (iii) a noncommutative kernel version of a Positivstellensatz (i.e., finding a certificate to explain why one kernel is positive at points where another given kernel is strictly positive).
Classification :
47A60, 47B32
Mots-clés : quantized functional analysis, noncommutative function, completely positive noncommutative kernel, completely positive map, bimodule maps
Mots-clés : quantized functional analysis, noncommutative function, completely positive noncommutative kernel, completely positive map, bimodule maps
@article{10_4171_dm_x24,
author = {Joseph A. Ball and Gregory Marx and Victor Vinnikov},
title = {Free noncommutative hereditary kernels: {Jordan} decomposition, {Arveson} extension, kernel domination},
journal = {Documenta mathematica},
pages = {1985--2040},
year = {2022},
volume = {27},
doi = {10.4171/dm/x24},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x24/}
}
TY - JOUR AU - Joseph A. Ball AU - Gregory Marx AU - Victor Vinnikov TI - Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination JO - Documenta mathematica PY - 2022 SP - 1985 EP - 2040 VL - 27 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/x24/ DO - 10.4171/dm/x24 ID - 10_4171_dm_x24 ER -
%0 Journal Article %A Joseph A. Ball %A Gregory Marx %A Victor Vinnikov %T Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination %J Documenta mathematica %D 2022 %P 1985-2040 %V 27 %U http://geodesic.mathdoc.fr/articles/10.4171/dm/x24/ %R 10.4171/dm/x24 %F 10_4171_dm_x24
Joseph A. Ball; Gregory Marx; Victor Vinnikov. Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination. Documenta mathematica, Tome 27 (2022), pp. 1985-2040. doi: 10.4171/dm/x24
Cité par Sources :