Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
Documenta mathematica, Tome 27 (2022), pp. 1985-2040 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We discuss (i) a quantized version of the Jordan decomposition theorem for a complex Borel measure on a compact Hausdorff space, namely, the more general problem of decomposing a general noncommutative kernel (a quantization of the standard notion of kernel function) as a linear combination of completely positive noncommutative kernels (a quantization of the standard notion of positive definite kernel). Other special cases of (i) include: the problem of decomposing a general operator-valued kernel function as a linear combination of positive kernels (not always possible), of decomposing a general bounded linear Hilbert-space operator as a linear combination of positive linear operators (always possible), of decomposing a completely bounded linear map from a C∗-algebra A to an injective C∗-algebra L(Y) as a linear combination of completely positive maps from A to L(Y) (always possible). We also discuss (ii) a noncommutative kernel generalization of the Arveson extension theorem (any completely positive map φ from an operator system S to an injective C∗-algebra L(Y) can be extended to a completely positive map φe​ from a C∗-algebra containing S to L(Y)), and (iii) a noncommutative kernel version of a Positivstellensatz (i.e., finding a certificate to explain why one kernel is positive at points where another given kernel is strictly positive).
DOI : 10.4171/dm/x24
Classification : 47A60, 47B32
Mots-clés : quantized functional analysis, noncommutative function, completely positive noncommutative kernel, completely positive map, bimodule maps
@article{10_4171_dm_x24,
     author = {Joseph A. Ball and Gregory Marx and Victor Vinnikov},
     title = {Free noncommutative hereditary kernels: {Jordan} decomposition, {Arveson} extension, kernel domination},
     journal = {Documenta mathematica},
     pages = {1985--2040},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x24},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x24/}
}
TY  - JOUR
AU  - Joseph A. Ball
AU  - Gregory Marx
AU  - Victor Vinnikov
TI  - Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
JO  - Documenta mathematica
PY  - 2022
SP  - 1985
EP  - 2040
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x24/
DO  - 10.4171/dm/x24
ID  - 10_4171_dm_x24
ER  - 
%0 Journal Article
%A Joseph A. Ball
%A Gregory Marx
%A Victor Vinnikov
%T Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
%J Documenta mathematica
%D 2022
%P 1985-2040
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x24/
%R 10.4171/dm/x24
%F 10_4171_dm_x24
Joseph A. Ball; Gregory Marx; Victor Vinnikov. Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination. Documenta mathematica, Tome 27 (2022), pp. 1985-2040. doi: 10.4171/dm/x24

Cité par Sources :