$p$-Selmer group and modular symbols
Documenta mathematica, Tome 27 (2022), pp. 1891-1922 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We prove that the dimension of the p-Selmer group of an elliptic curve is controlled by certain analytic quantities associated with modular symbols as conjectured by Kurihara.
DOI : 10.4171/dm/x21
Classification : 11G05, 11G40, 11R23, 11R34
Mots-clés : elliptic curves, Euler systems, modular symbols, p-Selmer group, Kolyvagin systems, Mazur-Tate conjecture
@article{10_4171_dm_x21,
     author = {Ryotaro Sakamoto},
     title = {$p${-Selmer} group and modular symbols},
     journal = {Documenta mathematica},
     pages = {1891--1922},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x21},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x21/}
}
TY  - JOUR
AU  - Ryotaro Sakamoto
TI  - $p$-Selmer group and modular symbols
JO  - Documenta mathematica
PY  - 2022
SP  - 1891
EP  - 1922
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x21/
DO  - 10.4171/dm/x21
ID  - 10_4171_dm_x21
ER  - 
%0 Journal Article
%A Ryotaro Sakamoto
%T $p$-Selmer group and modular symbols
%J Documenta mathematica
%D 2022
%P 1891-1922
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x21/
%R 10.4171/dm/x21
%F 10_4171_dm_x21
Ryotaro Sakamoto. $p$-Selmer group and modular symbols. Documenta mathematica, Tome 27 (2022), pp. 1891-1922. doi: 10.4171/dm/x21

Cité par Sources :