The integral trace form as a complete invariant for real $S_n$ number fields
Documenta mathematica, Tome 27 (2022), pp. 1865-1889
Cet article a éte moissonné depuis la source EMS Press
In this paper we show that the integral trace is a complete invariant for degree n,Sn real number fields that satisfy certain ramification bound. Among the fields that our results cover, there are those of square free different ideal; for such fields we find an explicit description of the isometry group of the integral trace.
Classification :
11R21, 11R29, 11R80
Mots-clés : integral trace form, tame fields, Sn-extensions
Mots-clés : integral trace form, tame fields, Sn-extensions
@article{10_4171_dm_x20,
author = {Guillermo Mantilla-Soler and Carlos Rivera},
title = {The integral trace form as a complete invariant for real $S_n$ number fields},
journal = {Documenta mathematica},
pages = {1865--1889},
year = {2022},
volume = {27},
doi = {10.4171/dm/x20},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x20/}
}
TY - JOUR AU - Guillermo Mantilla-Soler AU - Carlos Rivera TI - The integral trace form as a complete invariant for real $S_n$ number fields JO - Documenta mathematica PY - 2022 SP - 1865 EP - 1889 VL - 27 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/x20/ DO - 10.4171/dm/x20 ID - 10_4171_dm_x20 ER -
Guillermo Mantilla-Soler; Carlos Rivera. The integral trace form as a complete invariant for real $S_n$ number fields. Documenta mathematica, Tome 27 (2022), pp. 1865-1889. doi: 10.4171/dm/x20
Cité par Sources :