Hodge–Newton filtration for $p$-divisible groups with ramified endomorphism structure
Documenta mathematica, Tome 27 (2022), pp. 1805-1863 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let OK​ be a complete discrete valuation ring of mixed characteristic (0,p) with perfect residue field. We prove the existence of the Hodge–Newton filtration for p-divisible groups over OK​ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of Qp​. The argument is based on the Harder–Narasimhan theory for finite flat group schemes over OK​. In particular, we describe a sufficient condition for the existence of a filtration of p-divisible groups over OK​ associated to a break point of the Harder–Narasimhan polygon.
DOI : 10.4171/dm/x19
Classification : 14L05
Mots-clés : p-divisible groups, Hodge-Newton filtration, Harder-Narasimhan theory, ramified PEL structure
@article{10_4171_dm_x19,
     author = {Andrea Marrama},
     title = {Hodge{\textendash}Newton filtration for $p$-divisible groups with ramified endomorphism structure},
     journal = {Documenta mathematica},
     pages = {1805--1863},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x19},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x19/}
}
TY  - JOUR
AU  - Andrea Marrama
TI  - Hodge–Newton filtration for $p$-divisible groups with ramified endomorphism structure
JO  - Documenta mathematica
PY  - 2022
SP  - 1805
EP  - 1863
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x19/
DO  - 10.4171/dm/x19
ID  - 10_4171_dm_x19
ER  - 
%0 Journal Article
%A Andrea Marrama
%T Hodge–Newton filtration for $p$-divisible groups with ramified endomorphism structure
%J Documenta mathematica
%D 2022
%P 1805-1863
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x19/
%R 10.4171/dm/x19
%F 10_4171_dm_x19
Andrea Marrama. Hodge–Newton filtration for $p$-divisible groups with ramified endomorphism structure. Documenta mathematica, Tome 27 (2022), pp. 1805-1863. doi: 10.4171/dm/x19

Cité par Sources :