Hodge–Newton filtration for $p$-divisible groups with ramified endomorphism structure
Documenta mathematica, Tome 27 (2022), pp. 1805-1863
Cet article a éte moissonné depuis la source EMS Press
Let OK be a complete discrete valuation ring of mixed characteristic (0,p) with perfect residue field. We prove the existence of the Hodge–Newton filtration for p-divisible groups over OK with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of Qp. The argument is based on the Harder–Narasimhan theory for finite flat group schemes over OK. In particular, we describe a sufficient condition for the existence of a filtration of p-divisible groups over OK associated to a break point of the Harder–Narasimhan polygon.
Classification :
14L05
Mots-clés : p-divisible groups, Hodge-Newton filtration, Harder-Narasimhan theory, ramified PEL structure
Mots-clés : p-divisible groups, Hodge-Newton filtration, Harder-Narasimhan theory, ramified PEL structure
@article{10_4171_dm_x19,
author = {Andrea Marrama},
title = {Hodge{\textendash}Newton filtration for $p$-divisible groups with ramified endomorphism structure},
journal = {Documenta mathematica},
pages = {1805--1863},
year = {2022},
volume = {27},
doi = {10.4171/dm/x19},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x19/}
}
Andrea Marrama. Hodge–Newton filtration for $p$-divisible groups with ramified endomorphism structure. Documenta mathematica, Tome 27 (2022), pp. 1805-1863. doi: 10.4171/dm/x19
Cité par Sources :