Supports for constructible systems
Documenta mathematica, Tome 27 (2022), pp. 1739-1772
Cet article a éte moissonné depuis la source EMS Press
We develop a "universal" support theory for derived categories of constructible (analytic or étale) sheaves, holonomic D-modules, mixed Hodge modules and others. As applications we classify such objects up to the tensor triangulated structure and discuss the question of monoidal topological reconstruction of algebraic varieties.
Classification :
14F08, 14F20, 14F25, 14F42, 18G80, 18M05
Mots-clés : classification, mixed Hodge modules, constructible sheaves, holonomic D-modules, motivic sheaves, constructible systems, support datum, tensor-triangular geometry, smashing spectrum, reconstruction
Mots-clés : classification, mixed Hodge modules, constructible sheaves, holonomic D-modules, motivic sheaves, constructible systems, support datum, tensor-triangular geometry, smashing spectrum, reconstruction
@article{10_4171_dm_x17,
author = {Martin Gallauer},
title = {Supports for constructible systems},
journal = {Documenta mathematica},
pages = {1739--1772},
year = {2022},
volume = {27},
doi = {10.4171/dm/x17},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x17/}
}
Martin Gallauer. Supports for constructible systems. Documenta mathematica, Tome 27 (2022), pp. 1739-1772. doi: 10.4171/dm/x17
Cité par Sources :