Supports for constructible systems
Documenta mathematica, Tome 27 (2022), pp. 1739-1772 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We develop a "universal" support theory for derived categories of constructible (analytic or étale) sheaves, holonomic D-modules, mixed Hodge modules and others. As applications we classify such objects up to the tensor triangulated structure and discuss the question of monoidal topological reconstruction of algebraic varieties.
DOI : 10.4171/dm/x17
Classification : 14F08, 14F20, 14F25, 14F42, 18G80, 18M05
Mots-clés : classification, mixed Hodge modules, constructible sheaves, holonomic D-modules, motivic sheaves, constructible systems, support datum, tensor-triangular geometry, smashing spectrum, reconstruction
@article{10_4171_dm_x17,
     author = {Martin Gallauer},
     title = {Supports for constructible systems},
     journal = {Documenta mathematica},
     pages = {1739--1772},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x17},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x17/}
}
TY  - JOUR
AU  - Martin Gallauer
TI  - Supports for constructible systems
JO  - Documenta mathematica
PY  - 2022
SP  - 1739
EP  - 1772
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x17/
DO  - 10.4171/dm/x17
ID  - 10_4171_dm_x17
ER  - 
%0 Journal Article
%A Martin Gallauer
%T Supports for constructible systems
%J Documenta mathematica
%D 2022
%P 1739-1772
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x17/
%R 10.4171/dm/x17
%F 10_4171_dm_x17
Martin Gallauer. Supports for constructible systems. Documenta mathematica, Tome 27 (2022), pp. 1739-1772. doi: 10.4171/dm/x17

Cité par Sources :