Topological Iwasawa invariants and arithmetic statistics
Documenta mathematica, Tome 27 (2022), pp. 1643-1669 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Given a prime number p, we study topological analogues of Iwasawa invariants associated to Zp​-covers of the 3-sphere that are branched along a link. We prove explicit criteria to detect these Iwasawa invariants, and apply them to the study of links consisting of 2 component knots. Fixing the prime p, we prove statistical results for the average behaviour of p-primary Iwasawa invariants for 2-bridge links that are in Schubert normal form. Our main result, which is entirely unconditional, shows that the density of 2-bridge links for which the μ-invariant vanishes, and the λ-invariant is equal to 1, is (1−p1​). We also conjecture that the density of 2-bridge links for which the μ-invariant vanishes is 1, and this is significantly backed by computational evidence. Our results are proven in a topological setting, yet have arithmetic significance, as we set out new directions in arithmetic statistics and arithmetic topology.
DOI : 10.4171/dm/x14
Classification : 11R23, 57K10, 57K14
Mots-clés : knot theory, arithmetic statistics, arithmetic topology, topological Iwasawa invariants, analogies between number theory and topology
@article{10_4171_dm_x14,
     author = {Cedric Dion and Anwesh Ray},
     title = {Topological {Iwasawa} invariants and arithmetic statistics},
     journal = {Documenta mathematica},
     pages = {1643--1669},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/x14},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/x14/}
}
TY  - JOUR
AU  - Cedric Dion
AU  - Anwesh Ray
TI  - Topological Iwasawa invariants and arithmetic statistics
JO  - Documenta mathematica
PY  - 2022
SP  - 1643
EP  - 1669
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/x14/
DO  - 10.4171/dm/x14
ID  - 10_4171_dm_x14
ER  - 
%0 Journal Article
%A Cedric Dion
%A Anwesh Ray
%T Topological Iwasawa invariants and arithmetic statistics
%J Documenta mathematica
%D 2022
%P 1643-1669
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/x14/
%R 10.4171/dm/x14
%F 10_4171_dm_x14
Cedric Dion; Anwesh Ray. Topological Iwasawa invariants and arithmetic statistics. Documenta mathematica, Tome 27 (2022), pp. 1643-1669. doi: 10.4171/dm/x14

Cité par Sources :