Weak Dynkin type and the universality of non-negative Coxeter-regular integral quadratic forms
Documenta mathematica, Tome 30 (2025) no. 2, pp. 245-274

Voir la notice de l'article provenant de la source EMS Press

An integral quadratic form is called Coxeter-regular if its integer coefficients satisfy a divisibility condition equivalent to the fact that the associated Coxeter transformation and Weyl group are integral. Such forms are known to be useful in the study of finite-dimensional associative algebras, Lie algebras and certain singularities. We show that a non-negative (connected) Coxeter-regular form q is universal (that is, q represents all non-negative integers) if and only if q represents the integers 1,2,3,7 and 14. This may be viewed as a specialization (and, actually, an extension) of the Conway–Schneeberger/Bhargava “15 Theorem”. As one of the main tools we provide a complete classification, up to Z-equivalence, of all non-negative Coxeter-regular forms by means of so-called weak Dynkin type, which is a certain equivalence class of a Dynkin (bi)graph. In this way, we obtain a generalization of the known result of Barot-de la Peña for unit forms and simply-laced Dynkin diagrams.
DOI : 10.4171/dm/994
Classification : 11E25, 11E20, 11H55, 15A63, 15A21, 20F55
Mots-clés : integral quadratic form, universal quadratic form, unit form, Cox-regular quadratic form, Diophantine equation, Dynkin type, Dynkin diagram
@article{10_4171_dm_994,
     author = {Andrzej Mr\'oz and Katarzyna Zaj\k{a}c},
     title = {Weak {Dynkin} type and the universality of non-negative {Coxeter-regular} integral quadratic forms},
     journal = {Documenta mathematica},
     pages = {245--274},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2025},
     doi = {10.4171/dm/994},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/994/}
}
TY  - JOUR
AU  - Andrzej Mróz
AU  - Katarzyna Zając
TI  - Weak Dynkin type and the universality of non-negative Coxeter-regular integral quadratic forms
JO  - Documenta mathematica
PY  - 2025
SP  - 245
EP  - 274
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/994/
DO  - 10.4171/dm/994
ID  - 10_4171_dm_994
ER  - 
%0 Journal Article
%A Andrzej Mróz
%A Katarzyna Zając
%T Weak Dynkin type and the universality of non-negative Coxeter-regular integral quadratic forms
%J Documenta mathematica
%D 2025
%P 245-274
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/994/
%R 10.4171/dm/994
%F 10_4171_dm_994
Andrzej Mróz; Katarzyna Zając. Weak Dynkin type and the universality of non-negative Coxeter-regular integral quadratic forms. Documenta mathematica, Tome 30 (2025) no. 2, pp. 245-274. doi: 10.4171/dm/994

Cité par Sources :