Adjoints and canonical forms of polypols
Documenta mathematica, Tome 30 (2025) no. 2, pp. 275-346

Voir la notice de l'article provenant de la source EMS Press

Polypols are natural generalizations of polytopes, with boundaries given by non-linear algebraic hypersurfaces. We describe polypols in the plane and in 3-space that admit a unique adjoint hypersurface and study them from an algebro-geometric perspective. We relate planar polypols to positive geometries introduced originally in particle physics, and identify the adjoint curve of a planar polypol with the numerator of the canonical differential form associated with the positive geometry. We settle several cases of a conjecture by Wachspress claiming that the adjoint curve of a regular planar polypol does not intersect its interior. In particular, we provide a complete characterization of the real topology of the adjoint curve for arbitrary convex polygons. Finally, we determine all types of planar polypols such that the rational map sending a polypol to its adjoint is finite, and explore connections of our topic with algebraic statistics.
DOI : 10.4171/dm/991
Classification : 14N30, 14H10, 14P25, 14H05, 14H50, 14P10, 14H81, 51M20
Mots-clés : polypols, adjoints, canonical forms, positive geometries, plane curves, algebraic statistics
@article{10_4171_dm_991,
     author = {Kathl\'en Kohn and Ragni Piene and Kristian Ranestad and Felix Rydell and Boris Shapiro and Rainer Sinn and Miruna-\c{S}tefana Sorea and Simon Telen},
     title = {Adjoints and canonical forms of polypols},
     journal = {Documenta mathematica},
     pages = {275--346},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2025},
     doi = {10.4171/dm/991},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/991/}
}
TY  - JOUR
AU  - Kathlén Kohn
AU  - Ragni Piene
AU  - Kristian Ranestad
AU  - Felix Rydell
AU  - Boris Shapiro
AU  - Rainer Sinn
AU  - Miruna-Ştefana Sorea
AU  - Simon Telen
TI  - Adjoints and canonical forms of polypols
JO  - Documenta mathematica
PY  - 2025
SP  - 275
EP  - 346
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/991/
DO  - 10.4171/dm/991
ID  - 10_4171_dm_991
ER  - 
%0 Journal Article
%A Kathlén Kohn
%A Ragni Piene
%A Kristian Ranestad
%A Felix Rydell
%A Boris Shapiro
%A Rainer Sinn
%A Miruna-Ştefana Sorea
%A Simon Telen
%T Adjoints and canonical forms of polypols
%J Documenta mathematica
%D 2025
%P 275-346
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/991/
%R 10.4171/dm/991
%F 10_4171_dm_991
Kathlén Kohn; Ragni Piene; Kristian Ranestad; Felix Rydell; Boris Shapiro; Rainer Sinn; Miruna-Ştefana Sorea; Simon Telen. Adjoints and canonical forms of polypols. Documenta mathematica, Tome 30 (2025) no. 2, pp. 275-346. doi: 10.4171/dm/991

Cité par Sources :