Adjoints and canonical forms of polypols
Documenta mathematica, Tome 30 (2025) no. 2, pp. 275-346
Voir la notice de l'article provenant de la source EMS Press
Polypols are natural generalizations of polytopes, with boundaries given by non-linear algebraic hypersurfaces. We describe polypols in the plane and in 3-space that admit a unique adjoint hypersurface and study them from an algebro-geometric perspective. We relate planar polypols to positive geometries introduced originally in particle physics, and identify the adjoint curve of a planar polypol with the numerator of the canonical differential form associated with the positive geometry. We settle several cases of a conjecture by Wachspress claiming that the adjoint curve of a regular planar polypol does not intersect its interior. In particular, we provide a complete characterization of the real topology of the adjoint curve for arbitrary convex polygons. Finally, we determine all types of planar polypols such that the rational map sending a polypol to its adjoint is finite, and explore connections of our topic with algebraic statistics.
Classification :
14N30, 14H10, 14P25, 14H05, 14H50, 14P10, 14H81, 51M20
Mots-clés : polypols, adjoints, canonical forms, positive geometries, plane curves, algebraic statistics
Mots-clés : polypols, adjoints, canonical forms, positive geometries, plane curves, algebraic statistics
@article{10_4171_dm_991,
author = {Kathl\'en Kohn and Ragni Piene and Kristian Ranestad and Felix Rydell and Boris Shapiro and Rainer Sinn and Miruna-\c{S}tefana Sorea and Simon Telen},
title = {Adjoints and canonical forms of polypols},
journal = {Documenta mathematica},
pages = {275--346},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2025},
doi = {10.4171/dm/991},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/991/}
}
TY - JOUR AU - Kathlén Kohn AU - Ragni Piene AU - Kristian Ranestad AU - Felix Rydell AU - Boris Shapiro AU - Rainer Sinn AU - Miruna-Ştefana Sorea AU - Simon Telen TI - Adjoints and canonical forms of polypols JO - Documenta mathematica PY - 2025 SP - 275 EP - 346 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/991/ DO - 10.4171/dm/991 ID - 10_4171_dm_991 ER -
%0 Journal Article %A Kathlén Kohn %A Ragni Piene %A Kristian Ranestad %A Felix Rydell %A Boris Shapiro %A Rainer Sinn %A Miruna-Ştefana Sorea %A Simon Telen %T Adjoints and canonical forms of polypols %J Documenta mathematica %D 2025 %P 275-346 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/dm/991/ %R 10.4171/dm/991 %F 10_4171_dm_991
Kathlén Kohn; Ragni Piene; Kristian Ranestad; Felix Rydell; Boris Shapiro; Rainer Sinn; Miruna-Ştefana Sorea; Simon Telen. Adjoints and canonical forms of polypols. Documenta mathematica, Tome 30 (2025) no. 2, pp. 275-346. doi: 10.4171/dm/991
Cité par Sources :