Frobenius rigidity in $\mathbb{A}^{1}$-homotopy theory
Documenta mathematica, Tome 30 (2025) no. 1, pp. 219-244

Voir la notice de l'article provenant de la source EMS Press

We study the homotopy fixed points under the Frobenius endomorphism on the stable A1-homotopy category of schemes in characteristic p>0 and prove a rigidity result for cellular objects in these categories after inverting p. As a consequence we determine the analogous fixed points on the K-theory of algebraically closed fields in positive characteristic. We also prove a rigidity result for the homotopy fixed points of the partial Frobenius pullback on motivic cohomology groups in weights at most 1.
DOI : 10.4171/dm/988
Classification : 14F42, 14G17
Mots-clés : rigidity, K-theory, homotopy theory
@article{10_4171_dm_988,
     author = {Timo Richarz and Jakob Scholbach},
     title = {Frobenius rigidity in $\mathbb{A}^{1}$-homotopy theory},
     journal = {Documenta mathematica},
     pages = {219--244},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2025},
     doi = {10.4171/dm/988},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/988/}
}
TY  - JOUR
AU  - Timo Richarz
AU  - Jakob Scholbach
TI  - Frobenius rigidity in $\mathbb{A}^{1}$-homotopy theory
JO  - Documenta mathematica
PY  - 2025
SP  - 219
EP  - 244
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/988/
DO  - 10.4171/dm/988
ID  - 10_4171_dm_988
ER  - 
%0 Journal Article
%A Timo Richarz
%A Jakob Scholbach
%T Frobenius rigidity in $\mathbb{A}^{1}$-homotopy theory
%J Documenta mathematica
%D 2025
%P 219-244
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/988/
%R 10.4171/dm/988
%F 10_4171_dm_988
Timo Richarz; Jakob Scholbach. Frobenius rigidity in $\mathbb{A}^{1}$-homotopy theory. Documenta mathematica, Tome 30 (2025) no. 1, pp. 219-244. doi: 10.4171/dm/988

Cité par Sources :