Sufficient convexity and best approximation
Documenta mathematica, Tome 29 (2024) no. 6, pp. 1269-1279

Voir la notice de l'article provenant de la source EMS Press

Working constructively throughout, we introduce the notion of sufficient convexity for functions and sets and study its implications on the existence of best approximations of points in sets and of sets mutually.
DOI : 10.4171/dm/985
Classification : 03F60, 46S30
Mots-clés : constructive analysis, sufficiently convex functions, sufficiently convex sets, best approximation, uniform rotundity
@article{10_4171_dm_985,
     author = {Josef Berger and Douglas S. Bridges and Gregor Svindland},
     title = {Sufficient convexity and best approximation},
     journal = {Documenta mathematica},
     pages = {1269--1279},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2024},
     doi = {10.4171/dm/985},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/985/}
}
TY  - JOUR
AU  - Josef Berger
AU  - Douglas S. Bridges
AU  - Gregor Svindland
TI  - Sufficient convexity and best approximation
JO  - Documenta mathematica
PY  - 2024
SP  - 1269
EP  - 1279
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/985/
DO  - 10.4171/dm/985
ID  - 10_4171_dm_985
ER  - 
%0 Journal Article
%A Josef Berger
%A Douglas S. Bridges
%A Gregor Svindland
%T Sufficient convexity and best approximation
%J Documenta mathematica
%D 2024
%P 1269-1279
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/985/
%R 10.4171/dm/985
%F 10_4171_dm_985
Josef Berger; Douglas S. Bridges; Gregor Svindland. Sufficient convexity and best approximation. Documenta mathematica, Tome 29 (2024) no. 6, pp. 1269-1279. doi: 10.4171/dm/985

Cité par Sources :