Iwasawa theory for branched $\mathbb{Z}_{p}$-towers of finite graphs
Documenta mathematica, Tome 29 (2024) no. 6, pp. 1435-1468

Voir la notice de l'article provenant de la source EMS Press

We initiate the study of Iwasawa theory for branched Zp​-towers of finite connected graphs. These towers are more general than what have been studied so far, since the morphisms of graphs involved are branched covers, a particular kind of harmonic morphisms of graphs. We prove an analogue of Iwasawa’s asymptotic class number formula for the p-part of the number of spanning trees in this setting. Moreover, we find an explicit generator for the characteristic ideal of the finitely generated torsion Iwasawa module governing the growth of the p-part of the number of spanning trees in such towers.
DOI : 10.4171/dm/976
Classification : 11R23, 05C25
Mots-clés : Iwasawa theory, graph theory, spanning trees, harmonic covers, Jacobian groups, Iwasawa main conjecture
@article{10_4171_dm_976,
     author = {Rusiru Gambheera and Daniel Valli\`eres},
     title = {Iwasawa theory for branched $\mathbb{Z}_{p}$-towers of finite graphs},
     journal = {Documenta mathematica},
     pages = {1435--1468},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2024},
     doi = {10.4171/dm/976},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/976/}
}
TY  - JOUR
AU  - Rusiru Gambheera
AU  - Daniel Vallières
TI  - Iwasawa theory for branched $\mathbb{Z}_{p}$-towers of finite graphs
JO  - Documenta mathematica
PY  - 2024
SP  - 1435
EP  - 1468
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/976/
DO  - 10.4171/dm/976
ID  - 10_4171_dm_976
ER  - 
%0 Journal Article
%A Rusiru Gambheera
%A Daniel Vallières
%T Iwasawa theory for branched $\mathbb{Z}_{p}$-towers of finite graphs
%J Documenta mathematica
%D 2024
%P 1435-1468
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/976/
%R 10.4171/dm/976
%F 10_4171_dm_976
Rusiru Gambheera; Daniel Vallières. Iwasawa theory for branched $\mathbb{Z}_{p}$-towers of finite graphs. Documenta mathematica, Tome 29 (2024) no. 6, pp. 1435-1468. doi: 10.4171/dm/976

Cité par Sources :