Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1017-1058
Voir la notice de l'article provenant de la source EMS Press
We give regular models for modular curves associated with (normalizer of) split and non-split Cartan subgroups of GL2(Fp) (for p any prime). We then compute the group of connected components of the fiber at p of the Néron model of their Jacobians.
Classification :
11G18, 11G20, 14G35
Mots-clés : modular curves, regular models of curves
Mots-clés : modular curves, regular models of curves
@article{10_4171_dm_974,
author = {Bas Edixhoven and Pierre Parent},
title = {Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$},
journal = {Documenta mathematica},
pages = {1017--1058},
publisher = {mathdoc},
volume = {29},
number = {5},
year = {2024},
doi = {10.4171/dm/974},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/974/}
}
TY - JOUR
AU - Bas Edixhoven
AU - Pierre Parent
TI - Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$
JO - Documenta mathematica
PY - 2024
SP - 1017
EP - 1058
VL - 29
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/974/
DO - 10.4171/dm/974
ID - 10_4171_dm_974
ER -
Bas Edixhoven; Pierre Parent. Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1017-1058. doi: 10.4171/dm/974
Cité par Sources :