Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1017-1058

Voir la notice de l'article provenant de la source EMS Press

We give regular models for modular curves associated with (normalizer of) split and non-split Cartan subgroups of GL2​(Fp​) (for p any prime). We then compute the group of connected components of the fiber at p of the Néron model of their Jacobians.
DOI : 10.4171/dm/974
Classification : 11G18, 11G20, 14G35
Mots-clés : modular curves, regular models of curves
@article{10_4171_dm_974,
     author = {Bas Edixhoven and Pierre Parent},
     title = {Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$},
     journal = {Documenta mathematica},
     pages = {1017--1058},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2024},
     doi = {10.4171/dm/974},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/974/}
}
TY  - JOUR
AU  - Bas Edixhoven
AU  - Pierre Parent
TI  - Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$
JO  - Documenta mathematica
PY  - 2024
SP  - 1017
EP  - 1058
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/974/
DO  - 10.4171/dm/974
ID  - 10_4171_dm_974
ER  - 
%0 Journal Article
%A Bas Edixhoven
%A Pierre Parent
%T Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$
%J Documenta mathematica
%D 2024
%P 1017-1058
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/974/
%R 10.4171/dm/974
%F 10_4171_dm_974
Bas Edixhoven; Pierre Parent. Regular models of modular curves in prime level over $\mathbb{Z}_{p}^{\mathrm{ur}}$. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1017-1058. doi: 10.4171/dm/974

Cité par Sources :