Local $\varepsilon$-conjecture and $p$-adic differential equations
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1125-1156
Cet article a éte moissonné depuis la source EMS Press
Laurent Berger attached a p-adic differential equation Nrig(M) with a Frobenius structure to an arbitrary de Rham (φ,Γ)-module M over a Robba ring. In this article, we compare the local epsilon conjecture for the cyclotomic deformation of M with that of Nrig(M). We first define an isomorphism between the fundamental lines of their cyclotomic deformations using the second author’s results on the big exponential map. As a main result of the article, we show that this isomorphism enables us to reduce the local epsilon conjecture for the cyclotomic deformation of M to that of Nrig(M). The result can be regarded as a refined interpolation formula of the big exponential map.
Classification :
11F80, 11F85, 11R23
Mots-clés : p-adic Hodge theory, (φ,Γ)-module, Bloch–Kato’s exponential, Perrin-Riou’s exponential
Mots-clés : p-adic Hodge theory, (φ,Γ)-module, Bloch–Kato’s exponential, Perrin-Riou’s exponential
@article{10_4171_dm_973,
author = {Tetsuya Ishida and Kentaro Nakamura},
title = {Local $\varepsilon$-conjecture and $p$-adic differential equations},
journal = {Documenta mathematica},
pages = {1125--1156},
year = {2024},
volume = {29},
number = {5},
doi = {10.4171/dm/973},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/973/}
}
Tetsuya Ishida; Kentaro Nakamura. Local $\varepsilon$-conjecture and $p$-adic differential equations. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1125-1156. doi: 10.4171/dm/973
Cité par Sources :