On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1059-1084
Voir la notice de l'article provenant de la source EMS Press
We study the Newton stratification in the BdR+-Grassmannian for GLn associated to an arbitrary (possibly nonbasic) element of B(GLn). Our main result classifies all nonempty Newton strata in an arbitrary minuscule Schubert cell. For a large class of elements in B(GLn), our classification is given by some explicit conditions in terms of Newton polygons. For the proof, we proceed by induction on n using a previous result of the author that classifies all extensions of two given vector bundles on the Fargues–Fontaine curve.
Classification :
11G18, 14G20, 14M15
Mots-clés : Newton stratification, BdR+-Grassmannian, p-adic flag varieties
Mots-clés : Newton stratification, BdR+-Grassmannian, p-adic flag varieties
@article{10_4171_dm_970,
author = {Serin Hong},
title = {On nonemptiness of {Newton} strata in the $B_{\mathrm{dR}}^{+}${-Grassmannian} for $\mathrm{GL}_{n}$},
journal = {Documenta mathematica},
pages = {1059--1084},
publisher = {mathdoc},
volume = {29},
number = {5},
year = {2024},
doi = {10.4171/dm/970},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/970/}
}
TY - JOUR
AU - Serin Hong
TI - On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$
JO - Documenta mathematica
PY - 2024
SP - 1059
EP - 1084
VL - 29
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/970/
DO - 10.4171/dm/970
ID - 10_4171_dm_970
ER -
Serin Hong. On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1059-1084. doi: 10.4171/dm/970
Cité par Sources :