On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1059-1084

Voir la notice de l'article provenant de la source EMS Press

We study the Newton stratification in the BdR+​-Grassmannian for GLn​ associated to an arbitrary (possibly nonbasic) element of B(GLn​). Our main result classifies all nonempty Newton strata in an arbitrary minuscule Schubert cell. For a large class of elements in B(GLn​), our classification is given by some explicit conditions in terms of Newton polygons. For the proof, we proceed by induction on n using a previous result of the author that classifies all extensions of two given vector bundles on the Fargues–Fontaine curve.
DOI : 10.4171/dm/970
Classification : 11G18, 14G20, 14M15
Mots-clés : Newton stratification, BdR+​-Grassmannian, p-adic flag varieties
@article{10_4171_dm_970,
     author = {Serin Hong},
     title = {On nonemptiness of {Newton} strata in the $B_{\mathrm{dR}}^{+}${-Grassmannian} for $\mathrm{GL}_{n}$},
     journal = {Documenta mathematica},
     pages = {1059--1084},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2024},
     doi = {10.4171/dm/970},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/970/}
}
TY  - JOUR
AU  - Serin Hong
TI  - On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$
JO  - Documenta mathematica
PY  - 2024
SP  - 1059
EP  - 1084
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/970/
DO  - 10.4171/dm/970
ID  - 10_4171_dm_970
ER  - 
%0 Journal Article
%A Serin Hong
%T On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$
%J Documenta mathematica
%D 2024
%P 1059-1084
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/970/
%R 10.4171/dm/970
%F 10_4171_dm_970
Serin Hong. On nonemptiness of Newton strata in the $B_{\mathrm{dR}}^{+}$-Grassmannian for $\mathrm{GL}_{n}$. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1059-1084. doi: 10.4171/dm/970

Cité par Sources :