An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1085-1124

Voir la notice de l'article provenant de la source EMS Press

Through the study of large deviations theory for matrix Brownian motion, Biane, Capitaine, and Guionnet proved the inequality χ(X)≤χ∗(X) that relates two analogs of entropy in free probability defined by Voiculescu. We give a new proof of χ≤χ∗ that is elementary in the sense that it does not rely on stochastic differential equations and large deviations theory. Moreover, we generalize the result to conditional microstates and non-microstates free entropy.
DOI : 10.4171/dm/969
Classification : 46L54, 46L53, 60B20, 94A17
Mots-clés : free entropy, conditional entropy, random matrix, free Fisher information, tracial von Neumann algebra
@article{10_4171_dm_969,
     author = {David Jekel and Jennifer Pi},
     title = {An elementary proof of the inequality $\chi\leq\chi^{*}$ for~conditional free entropy},
     journal = {Documenta mathematica},
     pages = {1085--1124},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2024},
     doi = {10.4171/dm/969},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/969/}
}
TY  - JOUR
AU  - David Jekel
AU  - Jennifer Pi
TI  - An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy
JO  - Documenta mathematica
PY  - 2024
SP  - 1085
EP  - 1124
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/969/
DO  - 10.4171/dm/969
ID  - 10_4171_dm_969
ER  - 
%0 Journal Article
%A David Jekel
%A Jennifer Pi
%T An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy
%J Documenta mathematica
%D 2024
%P 1085-1124
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/969/
%R 10.4171/dm/969
%F 10_4171_dm_969
David Jekel; Jennifer Pi. An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1085-1124. doi: 10.4171/dm/969

Cité par Sources :