An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy
Documenta mathematica, Tome 29 (2024) no. 5, pp. 1085-1124
Cet article a éte moissonné depuis la source EMS Press
Through the study of large deviations theory for matrix Brownian motion, Biane, Capitaine, and Guionnet proved the inequality χ(X)≤χ∗(X) that relates two analogs of entropy in free probability defined by Voiculescu. We give a new proof of χ≤χ∗ that is elementary in the sense that it does not rely on stochastic differential equations and large deviations theory. Moreover, we generalize the result to conditional microstates and non-microstates free entropy.
Classification :
46L54, 46L53, 60B20, 94A17
Mots-clés : free entropy, conditional entropy, random matrix, free Fisher information, tracial von Neumann algebra
Mots-clés : free entropy, conditional entropy, random matrix, free Fisher information, tracial von Neumann algebra
@article{10_4171_dm_969,
author = {David Jekel and Jennifer Pi},
title = {An elementary proof of the inequality $\chi\leq\chi^{*}$ for~conditional free entropy},
journal = {Documenta mathematica},
pages = {1085--1124},
year = {2024},
volume = {29},
number = {5},
doi = {10.4171/dm/969},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/969/}
}
TY - JOUR
AU - David Jekel
AU - Jennifer Pi
TI - An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy
JO - Documenta mathematica
PY - 2024
SP - 1085
EP - 1124
VL - 29
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/969/
DO - 10.4171/dm/969
ID - 10_4171_dm_969
ER -
David Jekel; Jennifer Pi. An elementary proof of the inequality $\chi\leq\chi^{*}$ for conditional free entropy. Documenta mathematica, Tome 29 (2024) no. 5, pp. 1085-1124. doi: 10.4171/dm/969
Cité par Sources :