The cubic Dirac operator on compact quotients of the oscillator group
Documenta mathematica, Tome 29 (2024) no. 4, pp. 985-1016
Voir la notice de l'article provenant de la source EMS Press
We study Kostant’s cubic Dirac operator D1/3 on locally symmetric Lorentzian manifolds of the form Γ\Osc1, where Osc1 is the four-dimensional oscillator group and Γ⊂Osc1 is a cocompact lattice. These quotients are the only four-dimensional, compact Lorentzian G-homogeneous spaces for a solvable but non-abelian Lie group G. We determine the spectrum of D1/3. We also give an explicit decomposition of the regular representation of Osc1 on L2-sections of the spinor bundle into irreducible subrepresentations and we determine the eigenspaces of D1/3.
Classification :
53C50, 35Q41, 58J50, 22E27
Mots-clés : Lorentzian manifold, cubic Dirac operator, locally symmetric space
Mots-clés : Lorentzian manifold, cubic Dirac operator, locally symmetric space
@article{10_4171_dm_967,
author = {Ines Kath and Margarita Kraus},
title = {The cubic {Dirac} operator on compact quotients of the oscillator group},
journal = {Documenta mathematica},
pages = {985--1016},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2024},
doi = {10.4171/dm/967},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/967/}
}
TY - JOUR AU - Ines Kath AU - Margarita Kraus TI - The cubic Dirac operator on compact quotients of the oscillator group JO - Documenta mathematica PY - 2024 SP - 985 EP - 1016 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/967/ DO - 10.4171/dm/967 ID - 10_4171_dm_967 ER -
Ines Kath; Margarita Kraus. The cubic Dirac operator on compact quotients of the oscillator group. Documenta mathematica, Tome 29 (2024) no. 4, pp. 985-1016. doi: 10.4171/dm/967
Cité par Sources :