The cubic Dirac operator on compact quotients of the oscillator group
Documenta mathematica, Tome 29 (2024) no. 4, pp. 985-1016

Voir la notice de l'article provenant de la source EMS Press

We study Kostant’s cubic Dirac operator D1/3 on locally symmetric Lorentzian manifolds of the form Γ\Osc1​, where Osc1​ is the four-dimensional oscillator group and Γ⊂Osc1​ is a cocompact lattice. These quotients are the only four-dimensional, compact Lorentzian G-homoge­neous spaces for a solvable but non-abelian Lie group G. We determine the spectrum of D1/3. We also give an explicit decomposition of the regular representation of Osc1​ on L2-sections of the spinor bundle into irreducible subrepresentations and we determine the eigenspaces of D1/3.
DOI : 10.4171/dm/967
Classification : 53C50, 35Q41, 58J50, 22E27
Mots-clés : Lorentzian manifold, cubic Dirac operator, locally symmetric space
@article{10_4171_dm_967,
     author = {Ines Kath and Margarita Kraus},
     title = {The cubic {Dirac} operator on compact quotients of the oscillator group},
     journal = {Documenta mathematica},
     pages = {985--1016},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2024},
     doi = {10.4171/dm/967},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/967/}
}
TY  - JOUR
AU  - Ines Kath
AU  - Margarita Kraus
TI  - The cubic Dirac operator on compact quotients of the oscillator group
JO  - Documenta mathematica
PY  - 2024
SP  - 985
EP  - 1016
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/967/
DO  - 10.4171/dm/967
ID  - 10_4171_dm_967
ER  - 
%0 Journal Article
%A Ines Kath
%A Margarita Kraus
%T The cubic Dirac operator on compact quotients of the oscillator group
%J Documenta mathematica
%D 2024
%P 985-1016
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/967/
%R 10.4171/dm/967
%F 10_4171_dm_967
Ines Kath; Margarita Kraus. The cubic Dirac operator on compact quotients of the oscillator group. Documenta mathematica, Tome 29 (2024) no. 4, pp. 985-1016. doi: 10.4171/dm/967

Cité par Sources :