Generalized Minkowski weights and Chow rings of $T$-varieties
Documenta mathematica, Tome 29 (2024) no. 4, pp. 831-861
Voir la notice de l'article provenant de la source EMS Press
We give a combinatorial characterization of Fulton’s operational Chow cohomology groups of a complete, Q-factorial, rational T-variety of complexity one in terms of so called generalized Minkowski weights in the contraction-free case. We also describe the intersection product with Cartier invariant divisors in terms of the combinatorial data. In particular this provides a new way of computing top intersection numbers of invariant Cartier divisors combinatorially.
Classification :
14C25, 14C15, 14L30, 14M25, 14T90
Mots-clés : algebraic cycles, Chow groups, Torus actions, tropical cycles
Mots-clés : algebraic cycles, Chow groups, Torus actions, tropical cycles
@article{10_4171_dm_965,
author = {Ana Botero},
title = {Generalized {Minkowski} weights and {Chow} rings of $T$-varieties},
journal = {Documenta mathematica},
pages = {831--861},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2024},
doi = {10.4171/dm/965},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/965/}
}
Ana Botero. Generalized Minkowski weights and Chow rings of $T$-varieties. Documenta mathematica, Tome 29 (2024) no. 4, pp. 831-861. doi: 10.4171/dm/965
Cité par Sources :