Generalized Minkowski weights and Chow rings of $T$-varieties
Documenta mathematica, Tome 29 (2024) no. 4, pp. 831-861

Voir la notice de l'article provenant de la source EMS Press

We give a combinatorial characterization of Fulton’s operational Chow cohomology groups of a complete, Q-factorial, rational T-variety of complexity one in terms of so called generalized Minkowski weights in the contraction-free case. We also describe the intersection product with Cartier invariant divisors in terms of the combinatorial data. In particular this provides a new way of computing top intersection numbers of invariant Cartier divisors combinatorially.
DOI : 10.4171/dm/965
Classification : 14C25, 14C15, 14L30, 14M25, 14T90
Mots-clés : algebraic cycles, Chow groups, Torus actions, tropical cycles
@article{10_4171_dm_965,
     author = {Ana Botero},
     title = {Generalized {Minkowski} weights and {Chow} rings of $T$-varieties},
     journal = {Documenta mathematica},
     pages = {831--861},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2024},
     doi = {10.4171/dm/965},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/965/}
}
TY  - JOUR
AU  - Ana Botero
TI  - Generalized Minkowski weights and Chow rings of $T$-varieties
JO  - Documenta mathematica
PY  - 2024
SP  - 831
EP  - 861
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/965/
DO  - 10.4171/dm/965
ID  - 10_4171_dm_965
ER  - 
%0 Journal Article
%A Ana Botero
%T Generalized Minkowski weights and Chow rings of $T$-varieties
%J Documenta mathematica
%D 2024
%P 831-861
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/965/
%R 10.4171/dm/965
%F 10_4171_dm_965
Ana Botero. Generalized Minkowski weights and Chow rings of $T$-varieties. Documenta mathematica, Tome 29 (2024) no. 4, pp. 831-861. doi: 10.4171/dm/965

Cité par Sources :