Quotient graphs of symmetrically rigid frameworks
Documenta mathematica, Tome 29 (2024) no. 3, pp. 561-595
Voir la notice de l'article provenant de la source EMS Press
A natural problem in combinatorial rigidity theory concerns the determination of the rigidity or flexibility of bar-joint frameworks in Rd that admit some non-trivial symmetry. When d=2 there is a large literature on this topic. In particular, it is typical to quotient the symmetric graph by the group and analyse the rigidity of symmetric, but otherwise generic frameworks, using the combinatorial structure of the appropriate group-labelled quotient graph. However, mirroring the situation for generic rigidity, little is known combinatorially when d≥3. Nevertheless in the periodic case, a key result of Borcea and Streinu in 2011 characterises when a quotient graph can be lifted to a rigid periodic framework in Rd. We develop an analogous theory for symmetric frameworks in Rd. The results obtained apply to all finite and infinite 2-dimensional point groups, and then in arbitrary dimension they concern a wide range of infinite point groups, sufficiently large finite groups and groups containing translations and rotations. For the case of finite groups we also derive results concerning the probability of assigning group labels to a quotient graph so that the resulting lift is symmetrically rigid in Rd.
Classification :
52C25, 05C10, 05E18, 60C05
Mots-clés : bar-joint framework, symmetric rigidity, group-labelled quotient graph, rigid gain assignment
Mots-clés : bar-joint framework, symmetric rigidity, group-labelled quotient graph, rigid gain assignment
@article{10_4171_dm_958,
author = {Sean Dewar and Georg Grasegger and Eleftherios Kastis and Anthony Nixon},
title = {Quotient graphs of symmetrically rigid frameworks},
journal = {Documenta mathematica},
pages = {561--595},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2024},
doi = {10.4171/dm/958},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/958/}
}
TY - JOUR AU - Sean Dewar AU - Georg Grasegger AU - Eleftherios Kastis AU - Anthony Nixon TI - Quotient graphs of symmetrically rigid frameworks JO - Documenta mathematica PY - 2024 SP - 561 EP - 595 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/958/ DO - 10.4171/dm/958 ID - 10_4171_dm_958 ER -
%0 Journal Article %A Sean Dewar %A Georg Grasegger %A Eleftherios Kastis %A Anthony Nixon %T Quotient graphs of symmetrically rigid frameworks %J Documenta mathematica %D 2024 %P 561-595 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/dm/958/ %R 10.4171/dm/958 %F 10_4171_dm_958
Sean Dewar; Georg Grasegger; Eleftherios Kastis; Anthony Nixon. Quotient graphs of symmetrically rigid frameworks. Documenta mathematica, Tome 29 (2024) no. 3, pp. 561-595. doi: 10.4171/dm/958
Cité par Sources :