Infinitesimal structure of log canonical thresholds
Documenta mathematica, Tome 29 (2024) no. 3, pp. 703-732
Voir la notice de l'article provenant de la source EMS Press
We show that log canonical thresholds of fixed dimension are standardized. More precisely, we show that any sequence of log canonical thresholds in fixed dimension d accumulates either (i) in a way which is similar to how standard and hyperstandard sets accumulate, or (ii) to log canonical thresholds in dimension ≤d−2. This provides an accurate description on the infinitesimal structure of the set of log canonical thresholds. We also discuss similar behaviors of minimal log discrepancies, canonical thresholds, and K-semistable thresholds.
Classification :
14B05, 14E30
Mots-clés : log canonical threshold, accumulation point, minimal log discrepancy
Mots-clés : log canonical threshold, accumulation point, minimal log discrepancy
@article{10_4171_dm_952,
author = {Jihao Liu and Fanjun Meng and Lingyao Xie},
title = {Infinitesimal structure of log canonical thresholds},
journal = {Documenta mathematica},
pages = {703--732},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2024},
doi = {10.4171/dm/952},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/952/}
}
TY - JOUR AU - Jihao Liu AU - Fanjun Meng AU - Lingyao Xie TI - Infinitesimal structure of log canonical thresholds JO - Documenta mathematica PY - 2024 SP - 703 EP - 732 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/952/ DO - 10.4171/dm/952 ID - 10_4171_dm_952 ER -
Jihao Liu; Fanjun Meng; Lingyao Xie. Infinitesimal structure of log canonical thresholds. Documenta mathematica, Tome 29 (2024) no. 3, pp. 703-732. doi: 10.4171/dm/952
Cité par Sources :