Infinitesimal structure of log canonical thresholds
Documenta mathematica, Tome 29 (2024) no. 3, pp. 703-732

Voir la notice de l'article provenant de la source EMS Press

We show that log canonical thresholds of fixed dimension are standardized. More precisely, we show that any sequence of log canonical thresholds in fixed dimension d accumulates either (i) in a way which is similar to how standard and hyperstandard sets accumulate, or (ii) to log canonical thresholds in dimension ≤d−2. This provides an accurate description on the infinitesimal structure of the set of log canonical thresholds. We also discuss similar behaviors of minimal log discrepancies, canonical thresholds, and K-semistable thresholds.
DOI : 10.4171/dm/952
Classification : 14B05, 14E30
Mots-clés : log canonical threshold, accumulation point, minimal log discrepancy
@article{10_4171_dm_952,
     author = {Jihao Liu and Fanjun Meng and Lingyao Xie},
     title = {Infinitesimal structure of log canonical thresholds},
     journal = {Documenta mathematica},
     pages = {703--732},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2024},
     doi = {10.4171/dm/952},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/952/}
}
TY  - JOUR
AU  - Jihao Liu
AU  - Fanjun Meng
AU  - Lingyao Xie
TI  - Infinitesimal structure of log canonical thresholds
JO  - Documenta mathematica
PY  - 2024
SP  - 703
EP  - 732
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/952/
DO  - 10.4171/dm/952
ID  - 10_4171_dm_952
ER  - 
%0 Journal Article
%A Jihao Liu
%A Fanjun Meng
%A Lingyao Xie
%T Infinitesimal structure of log canonical thresholds
%J Documenta mathematica
%D 2024
%P 703-732
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/952/
%R 10.4171/dm/952
%F 10_4171_dm_952
Jihao Liu; Fanjun Meng; Lingyao Xie. Infinitesimal structure of log canonical thresholds. Documenta mathematica, Tome 29 (2024) no. 3, pp. 703-732. doi: 10.4171/dm/952

Cité par Sources :