Monoidal Kleisli bicategories and the arithmetic product of coloured symmetric sequences
Documenta mathematica, Tome 29 (2024) no. 3, pp. 627-702
Voir la notice de l'article provenant de la source EMS Press
We extend the arithmetic product of species of structures and symmetric sequences studied by Maia and Méndez and by Dwyer and Hess to coloured symmetric sequences and show that it determines a normal oplax monoidal structure on the bicategory of coloured symmetric sequences. In order to do this, we establish general results on extending monoidal structures to Kleisli bicategories. Our approach uses monoidal double categories, which help us to attack the difficult problem of verifying the coherence conditions for a monoidal bicategory in an efficient way.
Classification :
18N10, 18N15, 18M80, 18C20, 18M05
Mots-clés : Kleisli bicategory, double category, monoidal structure, symmetric sequence, species of structures
Mots-clés : Kleisli bicategory, double category, monoidal structure, symmetric sequence, species of structures
@article{10_4171_dm_950,
author = {Nicola Gambino and Richard Garner and Christina Vasilakopoulou},
title = {Monoidal {Kleisli} bicategories and the arithmetic product of coloured symmetric sequences},
journal = {Documenta mathematica},
pages = {627--702},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2024},
doi = {10.4171/dm/950},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/950/}
}
TY - JOUR AU - Nicola Gambino AU - Richard Garner AU - Christina Vasilakopoulou TI - Monoidal Kleisli bicategories and the arithmetic product of coloured symmetric sequences JO - Documenta mathematica PY - 2024 SP - 627 EP - 702 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/950/ DO - 10.4171/dm/950 ID - 10_4171_dm_950 ER -
%0 Journal Article %A Nicola Gambino %A Richard Garner %A Christina Vasilakopoulou %T Monoidal Kleisli bicategories and the arithmetic product of coloured symmetric sequences %J Documenta mathematica %D 2024 %P 627-702 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/dm/950/ %R 10.4171/dm/950 %F 10_4171_dm_950
Nicola Gambino; Richard Garner; Christina Vasilakopoulou. Monoidal Kleisli bicategories and the arithmetic product of coloured symmetric sequences. Documenta mathematica, Tome 29 (2024) no. 3, pp. 627-702. doi: 10.4171/dm/950
Cité par Sources :