Motivic zeta functions of the Hilbert schemes of points on a surface
Documenta mathematica, Tome 29 (2024) no. 4, pp. 763-804

Voir la notice de l'article provenant de la source EMS Press

Let K be a discretely-valued field. Let X→SpecK be a surface with trivial canonical bundle. In this paper we construct a weak Néron model of the schemes Hilbn(X) over the ring of integers R⊆K. We exploit this construction in order to compute the motivic zeta function of Hilbn(X) in terms of the motivic zeta functions of X and of its base-changes with respect to the totally ramified extensions of K. We determine the poles of ZHilbn(X)​ and study its monodromy property, showing that if the monodromy conjecture holds for X then it holds for Hilbn(X) too.
DOI : 10.4171/dm/948
Classification : 14G10, 14J42, 14C05
Mots-clés : motivic integration, motivic zeta functions, monodromy conjecture, Hilbert schemes
@article{10_4171_dm_948,
     author = {Luigi Pagano},
     title = {Motivic zeta functions of the {Hilbert} schemes of points on a surface},
     journal = {Documenta mathematica},
     pages = {763--804},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2024},
     doi = {10.4171/dm/948},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/948/}
}
TY  - JOUR
AU  - Luigi Pagano
TI  - Motivic zeta functions of the Hilbert schemes of points on a surface
JO  - Documenta mathematica
PY  - 2024
SP  - 763
EP  - 804
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/948/
DO  - 10.4171/dm/948
ID  - 10_4171_dm_948
ER  - 
%0 Journal Article
%A Luigi Pagano
%T Motivic zeta functions of the Hilbert schemes of points on a surface
%J Documenta mathematica
%D 2024
%P 763-804
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/948/
%R 10.4171/dm/948
%F 10_4171_dm_948
Luigi Pagano. Motivic zeta functions of the Hilbert schemes of points on a surface. Documenta mathematica, Tome 29 (2024) no. 4, pp. 763-804. doi: 10.4171/dm/948

Cité par Sources :