Motivic zeta functions of the Hilbert schemes of points on a surface
Documenta mathematica, Tome 29 (2024) no. 4, pp. 763-804
Voir la notice de l'article provenant de la source EMS Press
Let K be a discretely-valued field. Let X→SpecK be a surface with trivial canonical bundle. In this paper we construct a weak Néron model of the schemes Hilbn(X) over the ring of integers R⊆K. We exploit this construction in order to compute the motivic zeta function of Hilbn(X) in terms of the motivic zeta functions of X and of its base-changes with respect to the totally ramified extensions of K. We determine the poles of ZHilbn(X) and study its monodromy property, showing that if the monodromy conjecture holds for X then it holds for Hilbn(X) too.
Classification :
14G10, 14J42, 14C05
Mots-clés : motivic integration, motivic zeta functions, monodromy conjecture, Hilbert schemes
Mots-clés : motivic integration, motivic zeta functions, monodromy conjecture, Hilbert schemes
@article{10_4171_dm_948,
author = {Luigi Pagano},
title = {Motivic zeta functions of the {Hilbert} schemes of points on a surface},
journal = {Documenta mathematica},
pages = {763--804},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2024},
doi = {10.4171/dm/948},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/948/}
}
Luigi Pagano. Motivic zeta functions of the Hilbert schemes of points on a surface. Documenta mathematica, Tome 29 (2024) no. 4, pp. 763-804. doi: 10.4171/dm/948
Cité par Sources :