Traffic distributions and independence II: Universal constructions for traffic spaces
Documenta mathematica, Tome 29 (2024) no. 1, pp. 39-114

Voir la notice de l'article provenant de la source EMS Press

We investigate questions related to the notion of traffics introduced by the third author as a non-commutative probability space with additional operations and equipped with the notion of traffic independence. We prove that any sequence of unitarily invariant random matrices, that converges in non-commutative distribution, converges as well in traffic distribution whenever it fulfils some factorization property and we provide an explicit description of the limit. We also improve the theory of traffic spaces by considering a positivity axiom related to the notion of state in non-commutative probability. We construct the free product of traffic spaces and prove that it preserves the positivity condition. This analysis leads to our main result stating that every non-commutative probability space endowed with a tracial state can be enlarged and equipped with a structure of traffic space.
DOI : 10.4171/dm/946
Classification : 15B52, 46L54
Mots-clés : random matrices, free probability, traffic probability
@article{10_4171_dm_946,
     author = {Guillaume C\'ebron and Antoine Dahlqvist and Camille Male},
     title = {Traffic distributions and independence {II:} {Universal} constructions for traffic spaces},
     journal = {Documenta mathematica},
     pages = {39--114},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2024},
     doi = {10.4171/dm/946},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/946/}
}
TY  - JOUR
AU  - Guillaume Cébron
AU  - Antoine Dahlqvist
AU  - Camille Male
TI  - Traffic distributions and independence II: Universal constructions for traffic spaces
JO  - Documenta mathematica
PY  - 2024
SP  - 39
EP  - 114
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/946/
DO  - 10.4171/dm/946
ID  - 10_4171_dm_946
ER  - 
%0 Journal Article
%A Guillaume Cébron
%A Antoine Dahlqvist
%A Camille Male
%T Traffic distributions and independence II: Universal constructions for traffic spaces
%J Documenta mathematica
%D 2024
%P 39-114
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/946/
%R 10.4171/dm/946
%F 10_4171_dm_946
Guillaume Cébron; Antoine Dahlqvist; Camille Male. Traffic distributions and independence II: Universal constructions for traffic spaces. Documenta mathematica, Tome 29 (2024) no. 1, pp. 39-114. doi: 10.4171/dm/946

Cité par Sources :