Standard $\lambda$-lattices, rigid $\mathrm{C}^{*}$ tensor categories, and (bi)modules
Documenta mathematica, Tome 29 (2024) no. 2, pp. 247-341
Voir la notice de l'article provenant de la source EMS Press
In this article, we construct a 2-shaded rigid C∗ multitensor category with canonical unitary dual functor directly from a standard λ-lattice. We use the notions of traceless Markov towers and lattices to define the notion of module and bimodule over standard λ-lattice(s), and we explicitly construct the associated module category and bimodule category over the corresponding 2-shaded rigid C∗ multitensor category. As an example, we compute the modules and bimodules for Temperley–Lieb–Jones standard λ-lattices in terms of traceless Markov towers and lattices. Translating into the unitary 2-category of bigraded Hilbert spaces, we recover De Commer–Yamashita’s classification of TLJ module categories in terms of edge weighted graphs, and a classification of TLJ bimodule categories in terms of biunitary connections on square-partite weighted graphs. As an application, we show that every (infinite depth) subfactor planar algebra embeds into the bipartite graph planar algebra of its principal graph.
Classification :
46L37, 18M30, 18N10
Mots-clés : Rigid C∗ tensor category, module category, bimodule category, standard λ-lattice, Markov tower, subfactor, planar algebra, module embedding
Mots-clés : Rigid C∗ tensor category, module category, bimodule category, standard λ-lattice, Markov tower, subfactor, planar algebra, module embedding
@article{10_4171_dm_944,
author = {Quan Chen},
title = {Standard $\lambda$-lattices, rigid $\mathrm{C}^{*}$ tensor categories, and~(bi)modules},
journal = {Documenta mathematica},
pages = {247--341},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2024},
doi = {10.4171/dm/944},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/944/}
}
TY - JOUR
AU - Quan Chen
TI - Standard $\lambda$-lattices, rigid $\mathrm{C}^{*}$ tensor categories, and (bi)modules
JO - Documenta mathematica
PY - 2024
SP - 247
EP - 341
VL - 29
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/944/
DO - 10.4171/dm/944
ID - 10_4171_dm_944
ER -
Quan Chen. Standard $\lambda$-lattices, rigid $\mathrm{C}^{*}$ tensor categories, and (bi)modules. Documenta mathematica, Tome 29 (2024) no. 2, pp. 247-341. doi: 10.4171/dm/944
Cité par Sources :