On the existence of uniformly bounded self-adjoint bases in GNS spaces
Documenta mathematica, Tome 28 (2023) no. 6, pp. 1381-1392

Voir la notice de l'article provenant de la source EMS Press

The Gelfand–Naimark–Segal (GNS) space of a diffuse finite von Neumann algebra with respect to a faithful normal tracial state admits an orthonormal basis consisting of the image inside the GNS space of a uniformly bounded sequence of self-adjoint operators.
DOI : 10.4171/dm/941
Classification : 46L10, 46L36
Mots-clés : von Neumann algebras, GNS spaces, orthonormal basis
@article{10_4171_dm_941,
     author = {Debabrata De and Kunal Mukherjee},
     title = {On the existence of uniformly bounded self-adjoint bases in {GNS} spaces},
     journal = {Documenta mathematica},
     pages = {1381--1392},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2023},
     doi = {10.4171/dm/941},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/941/}
}
TY  - JOUR
AU  - Debabrata De
AU  - Kunal Mukherjee
TI  - On the existence of uniformly bounded self-adjoint bases in GNS spaces
JO  - Documenta mathematica
PY  - 2023
SP  - 1381
EP  - 1392
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/941/
DO  - 10.4171/dm/941
ID  - 10_4171_dm_941
ER  - 
%0 Journal Article
%A Debabrata De
%A Kunal Mukherjee
%T On the existence of uniformly bounded self-adjoint bases in GNS spaces
%J Documenta mathematica
%D 2023
%P 1381-1392
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/941/
%R 10.4171/dm/941
%F 10_4171_dm_941
Debabrata De; Kunal Mukherjee. On the existence of uniformly bounded self-adjoint bases in GNS spaces. Documenta mathematica, Tome 28 (2023) no. 6, pp. 1381-1392. doi: 10.4171/dm/941

Cité par Sources :