On the existence of uniformly bounded self-adjoint bases in GNS spaces
Documenta mathematica, Tome 28 (2023) no. 6, pp. 1381-1392
Cet article a éte moissonné depuis la source EMS Press
The Gelfand–Naimark–Segal (GNS) space of a diffuse finite von Neumann algebra with respect to a faithful normal tracial state admits an orthonormal basis consisting of the image inside the GNS space of a uniformly bounded sequence of self-adjoint operators.
Classification :
46L10, 46L36
Mots-clés : von Neumann algebras, GNS spaces, orthonormal basis
Mots-clés : von Neumann algebras, GNS spaces, orthonormal basis
@article{10_4171_dm_941,
author = {Debabrata De and Kunal Mukherjee},
title = {On the existence of uniformly bounded self-adjoint bases in {GNS} spaces},
journal = {Documenta mathematica},
pages = {1381--1392},
year = {2023},
volume = {28},
number = {6},
doi = {10.4171/dm/941},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/941/}
}
Debabrata De; Kunal Mukherjee. On the existence of uniformly bounded self-adjoint bases in GNS spaces. Documenta mathematica, Tome 28 (2023) no. 6, pp. 1381-1392. doi: 10.4171/dm/941
Cité par Sources :