Bredon motivic cohomology of the complex numbers
Documenta mathematica, Tome 29 (2024) no. 1, pp. 115-140
Voir la notice de l'article provenant de la source EMS Press
Over the complex numbers, we compute the C2-equivariant Bredon motivic cohomology ring with Z/2 coefficients. By rigidity, this extends Suslin’s calculation of the motivic cohomology ring of algebraically closed fields of characteristic zero to the C2-equivariant motivic setting.
Classification :
14F42, 55P91, 55P42, 55P92
Mots-clés : Motivic homotopy theory, equivariant homotopy theory, Bredon cohomology
Mots-clés : Motivic homotopy theory, equivariant homotopy theory, Bredon cohomology
@article{10_4171_dm_939,
author = {Jeremiah Heller and Mircea Voineagu and Paul Arne {\O}stv{\ae}r},
title = {Bredon motivic cohomology of the complex numbers},
journal = {Documenta mathematica},
pages = {115--140},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2024},
doi = {10.4171/dm/939},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/939/}
}
TY - JOUR AU - Jeremiah Heller AU - Mircea Voineagu AU - Paul Arne Østvær TI - Bredon motivic cohomology of the complex numbers JO - Documenta mathematica PY - 2024 SP - 115 EP - 140 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/939/ DO - 10.4171/dm/939 ID - 10_4171_dm_939 ER -
Jeremiah Heller; Mircea Voineagu; Paul Arne Østvær. Bredon motivic cohomology of the complex numbers. Documenta mathematica, Tome 29 (2024) no. 1, pp. 115-140. doi: 10.4171/dm/939
Cité par Sources :