The locus of curves with an odd subcanonical point
Documenta mathematica, Tome 28 (2023) no. 5, pp. 1027-1052
Voir la notice de l'article provenant de la source EMS Press
We present an explicit construction of a compactification of the locus of smooth curves whose symmetric Weierstrass semigroup at a marked point is odd. This construction extends Stöhr’s techniques, which can be seen as a variant of Hauser’s algorithm for computing versal deformation spaces. As an application, we prove the rationality of the locus for genus at most six.
Classification :
14H55, 14H10, 13D02, 14D15
Mots-clés : Weierstrass points, moduli of curves, versal deformation
Mots-clés : Weierstrass points, moduli of curves, versal deformation
@article{10_4171_dm_934,
author = {Andr\'e Contiero and Aislan Fontes},
title = {The locus of curves with an odd subcanonical point},
journal = {Documenta mathematica},
pages = {1027--1052},
publisher = {mathdoc},
volume = {28},
number = {5},
year = {2023},
doi = {10.4171/dm/934},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/934/}
}
André Contiero; Aislan Fontes. The locus of curves with an odd subcanonical point. Documenta mathematica, Tome 28 (2023) no. 5, pp. 1027-1052. doi: 10.4171/dm/934
Cité par Sources :