The locus of curves with an odd subcanonical point
Documenta mathematica, Tome 28 (2023) no. 5, pp. 1027-1052

Voir la notice de l'article provenant de la source EMS Press

We present an explicit construction of a compactification of the locus of smooth curves whose symmetric Weierstrass semigroup at a marked point is odd. This construction extends Stöhr’s techniques, which can be seen as a variant of Hauser’s algorithm for computing versal deformation spaces. As an application, we prove the rationality of the locus for genus at most six.
DOI : 10.4171/dm/934
Classification : 14H55, 14H10, 13D02, 14D15
Mots-clés : Weierstrass points, moduli of curves, versal deformation
@article{10_4171_dm_934,
     author = {Andr\'e Contiero and Aislan Fontes},
     title = {The locus of curves with an odd subcanonical point},
     journal = {Documenta mathematica},
     pages = {1027--1052},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2023},
     doi = {10.4171/dm/934},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/934/}
}
TY  - JOUR
AU  - André Contiero
AU  - Aislan Fontes
TI  - The locus of curves with an odd subcanonical point
JO  - Documenta mathematica
PY  - 2023
SP  - 1027
EP  - 1052
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/934/
DO  - 10.4171/dm/934
ID  - 10_4171_dm_934
ER  - 
%0 Journal Article
%A André Contiero
%A Aislan Fontes
%T The locus of curves with an odd subcanonical point
%J Documenta mathematica
%D 2023
%P 1027-1052
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/934/
%R 10.4171/dm/934
%F 10_4171_dm_934
André Contiero; Aislan Fontes. The locus of curves with an odd subcanonical point. Documenta mathematica, Tome 28 (2023) no. 5, pp. 1027-1052. doi: 10.4171/dm/934

Cité par Sources :