Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians
Documenta mathematica, Tome 28 (2023) no. 5, pp. 1191-1233
Voir la notice de l'article provenant de la source EMS Press
We consider a spinless, non-relativistic particle bound by an external potential and linearly coupled to a quantized radiation field. The energy E(u,f) of product states of the form u⊗Ψf, where u is a normalized state for the particle and Ψf is a coherent state in Fock space for the field, gives the energy of a Klein–Gordon–Schrödinger system. We minimize the functional E(u,f) on its natural energy space. We prove the existence and uniqueness of a ground state under general conditions on the coupling function. In particular, neither an ultraviolet cutoff nor an infrared cutoff is imposed. Our results establish the convergence in the ultraviolet limit of both the ground state and ground state energy of the Klein–Gordon–Schrödinger energy functional, and provide the second-order asymptotic expansion of the ground state energy at small coupling.
Classification :
81T99, 35Q40
Mots-clés : Ground states, quasi-classical limit, non-relativistic quantum electrodynamics, calculus of variations, Nelson model, Hartree energy functional, ultraviolet limit
Mots-clés : Ground states, quasi-classical limit, non-relativistic quantum electrodynamics, calculus of variations, Nelson model, Hartree energy functional, ultraviolet limit
@article{10_4171_dm_929,
author = {S\'ebastien Breteaux and J\'er\'emy Faupin and Jimmy Payet},
title = {Quasi-classical ground states. {I.} {Linearly} coupled {Pauli{\textendash}Fierz} {Hamiltonians}},
journal = {Documenta mathematica},
pages = {1191--1233},
publisher = {mathdoc},
volume = {28},
number = {5},
year = {2023},
doi = {10.4171/dm/929},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/929/}
}
TY - JOUR AU - Sébastien Breteaux AU - Jérémy Faupin AU - Jimmy Payet TI - Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians JO - Documenta mathematica PY - 2023 SP - 1191 EP - 1233 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/929/ DO - 10.4171/dm/929 ID - 10_4171_dm_929 ER -
%0 Journal Article %A Sébastien Breteaux %A Jérémy Faupin %A Jimmy Payet %T Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians %J Documenta mathematica %D 2023 %P 1191-1233 %V 28 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/dm/929/ %R 10.4171/dm/929 %F 10_4171_dm_929
Sébastien Breteaux; Jérémy Faupin; Jimmy Payet. Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians. Documenta mathematica, Tome 28 (2023) no. 5, pp. 1191-1233. doi: 10.4171/dm/929
Cité par Sources :