Quaternionic Speh representations
Documenta mathematica, Tome 28 (2023) no. 4, pp. 903-937

Voir la notice de l'article provenant de la source EMS Press

For a central division algebra D, we study a family of representations of GLk,D​ (both locally and globally), which can be viewed as analogs of the Speh representations. At the non- Archimedean places, we show that these representations support unique models of degenerate type. Globally, we show that these representations support certain non-vanishing Fourier coefficients. We also obtain some partial results regarding unique models at the Archimedean places.
DOI : 10.4171/dm/928
Classification : 11F70, 22E50, 22E55
Mots-clés : Generalized Whittaker coefficients, Jacquet–Langlands correspondence, Speh representations, unique models
@article{10_4171_dm_928,
     author = {Yuanqing Cai},
     title = {Quaternionic {Speh} representations},
     journal = {Documenta mathematica},
     pages = {903--937},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2023},
     doi = {10.4171/dm/928},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/928/}
}
TY  - JOUR
AU  - Yuanqing Cai
TI  - Quaternionic Speh representations
JO  - Documenta mathematica
PY  - 2023
SP  - 903
EP  - 937
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/928/
DO  - 10.4171/dm/928
ID  - 10_4171_dm_928
ER  - 
%0 Journal Article
%A Yuanqing Cai
%T Quaternionic Speh representations
%J Documenta mathematica
%D 2023
%P 903-937
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/928/
%R 10.4171/dm/928
%F 10_4171_dm_928
Yuanqing Cai. Quaternionic Speh representations. Documenta mathematica, Tome 28 (2023) no. 4, pp. 903-937. doi: 10.4171/dm/928

Cité par Sources :