Cubic fourfolds, Kuznetsov components, and Chow motives
Documenta mathematica, Tome 28 (2023) no. 4, pp. 827-856

Voir la notice de l'article provenant de la source EMS Press

We prove that the Chow motives of two smooth cubic fourfolds whose Kuznetsov components are Fourier–Mukai equivalent are isomorphic as Frobenius algebra objects. As a corollary, there exists a Galois-equivariant isomorphism between their l-adic cohomology Frobenius algebras. We also discuss the case where the Kuznetsov component of a smooth cubic fourfold is equivalent to the derived category of a K3 surface.
DOI : 10.4171/dm/925
Classification : 14F08, 14J28, 14J42, 14C25, 14C15
Mots-clés : Motives, K3 surfaces, cubic fourfolds, derived categories, cohomology ring
@article{10_4171_dm_925,
     author = {Lie Fu and Charles Vial},
     title = {Cubic fourfolds, {Kuznetsov} components, and {Chow} motives},
     journal = {Documenta mathematica},
     pages = {827--856},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2023},
     doi = {10.4171/dm/925},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/925/}
}
TY  - JOUR
AU  - Lie Fu
AU  - Charles Vial
TI  - Cubic fourfolds, Kuznetsov components, and Chow motives
JO  - Documenta mathematica
PY  - 2023
SP  - 827
EP  - 856
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/925/
DO  - 10.4171/dm/925
ID  - 10_4171_dm_925
ER  - 
%0 Journal Article
%A Lie Fu
%A Charles Vial
%T Cubic fourfolds, Kuznetsov components, and Chow motives
%J Documenta mathematica
%D 2023
%P 827-856
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/925/
%R 10.4171/dm/925
%F 10_4171_dm_925
Lie Fu; Charles Vial. Cubic fourfolds, Kuznetsov components, and Chow motives. Documenta mathematica, Tome 28 (2023) no. 4, pp. 827-856. doi: 10.4171/dm/925

Cité par Sources :