Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue
Documenta mathematica, Tome 28 (2023) no. 4, pp. 857-901
Voir la notice de l'article provenant de la source EMS Press
We study the three-dimensional Neumann magnetic Laplacian in the presence of a semiclassical parameter and a non-uniform magnetic field with constant intensity. We determine a sharp two term asymptotics for the lowest eigenvalue, where the second term involves a quantity related to the magnetic field and the geometry of the domain. In the special case of the unit ball and a helical magnetic field, the concentration takes place on two symmetric points of the unit sphere.
Classification :
35P15, 35Q56
Mots-clés : Magnetic Laplacian, Neumann boundary condition, semi-classical analysis
Mots-clés : Magnetic Laplacian, Neumann boundary condition, semi-classical analysis
@article{10_4171_dm_922,
author = {Bernard Helffer and Ayman Kachmar},
title = {Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue},
journal = {Documenta mathematica},
pages = {857--901},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2023},
doi = {10.4171/dm/922},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/922/}
}
TY - JOUR AU - Bernard Helffer AU - Ayman Kachmar TI - Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue JO - Documenta mathematica PY - 2023 SP - 857 EP - 901 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/922/ DO - 10.4171/dm/922 ID - 10_4171_dm_922 ER -
Bernard Helffer; Ayman Kachmar. Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue. Documenta mathematica, Tome 28 (2023) no. 4, pp. 857-901. doi: 10.4171/dm/922
Cité par Sources :