Global rigid inner forms vs isocrystals
Documenta mathematica, Tome 28 (2023) no. 4, pp. 765-826
Voir la notice de l'article provenant de la source EMS Press
We compare the cohomology of the global Galois gerbes constructed by Kottwitz in arXiv:1401.5728 and by the first author in [Invent. Math. (2018), 271–369], respectively, and give applications to the theory of endoscopy.
Classification :
11R34, 11F70
Mots-clés : Galois gerbe, Galois cohomology, inner forms, stable trace formula, automorphic multiplicity
Mots-clés : Galois gerbe, Galois cohomology, inner forms, stable trace formula, automorphic multiplicity
@article{10_4171_dm_916,
author = {Tasho Kaletha and Olivier Ta{\"\i}bi},
title = {Global rigid inner forms vs isocrystals},
journal = {Documenta mathematica},
pages = {765--826},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2023},
doi = {10.4171/dm/916},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/916/}
}
Tasho Kaletha; Olivier Taïbi. Global rigid inner forms vs isocrystals. Documenta mathematica, Tome 28 (2023) no. 4, pp. 765-826. doi: 10.4171/dm/916
Cité par Sources :