Global rigid inner forms vs isocrystals
Documenta mathematica, Tome 28 (2023) no. 4, pp. 765-826

Voir la notice de l'article provenant de la source EMS Press

We compare the cohomology of the global Galois gerbes constructed by Kottwitz in arXiv:1401.5728 and by the first author in [Invent. Math. (2018), 271–369], respectively, and give applications to the theory of endoscopy.
DOI : 10.4171/dm/916
Classification : 11R34, 11F70
Mots-clés : Galois gerbe, Galois cohomology, inner forms, stable trace formula, automorphic multiplicity
@article{10_4171_dm_916,
     author = {Tasho Kaletha and Olivier Ta{\"\i}bi},
     title = {Global rigid inner forms vs isocrystals},
     journal = {Documenta mathematica},
     pages = {765--826},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2023},
     doi = {10.4171/dm/916},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/916/}
}
TY  - JOUR
AU  - Tasho Kaletha
AU  - Olivier Taïbi
TI  - Global rigid inner forms vs isocrystals
JO  - Documenta mathematica
PY  - 2023
SP  - 765
EP  - 826
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/916/
DO  - 10.4171/dm/916
ID  - 10_4171_dm_916
ER  - 
%0 Journal Article
%A Tasho Kaletha
%A Olivier Taïbi
%T Global rigid inner forms vs isocrystals
%J Documenta mathematica
%D 2023
%P 765-826
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/916/
%R 10.4171/dm/916
%F 10_4171_dm_916
Tasho Kaletha; Olivier Taïbi. Global rigid inner forms vs isocrystals. Documenta mathematica, Tome 28 (2023) no. 4, pp. 765-826. doi: 10.4171/dm/916

Cité par Sources :