On the minus component of the equivariant Tamagawa number conjecture for $\mathbb{G}_m$
Documenta mathematica, Tome 28 (2023) no. 2, pp. 419-511

Voir la notice de l'article provenant de la source EMS Press

The equivariant Tamagawa number conjecture (hereinafter called the eTNC) predicts close relationships between algebraic and analytic aspects of motives. In this paper, we prove a lot of new cases of the minus component of the eTNC for Gm​ and for CM abelian extensions. One of the main results states that the p-component of the eTNC is true when there exists at least one p-adic prime that is tamely ramified. The fundamental strategy is inspired by the work of Dasgupta and Kakde on the Brumer–Stark conjecture.
DOI : 10.4171/dm/914
Classification : 11R42, 11R29
Mots-clés : Class groups, L-functions, equivariant Tamagawa number conjecture
@article{10_4171_dm_914,
     author = {Mahiro Atsuta and Takenori Kataoka},
     title = {On the minus component of the equivariant {Tamagawa} number conjecture for $\mathbb{G}_m$},
     journal = {Documenta mathematica},
     pages = {419--511},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2023},
     doi = {10.4171/dm/914},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/914/}
}
TY  - JOUR
AU  - Mahiro Atsuta
AU  - Takenori Kataoka
TI  - On the minus component of the equivariant Tamagawa number conjecture for $\mathbb{G}_m$
JO  - Documenta mathematica
PY  - 2023
SP  - 419
EP  - 511
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/914/
DO  - 10.4171/dm/914
ID  - 10_4171_dm_914
ER  - 
%0 Journal Article
%A Mahiro Atsuta
%A Takenori Kataoka
%T On the minus component of the equivariant Tamagawa number conjecture for $\mathbb{G}_m$
%J Documenta mathematica
%D 2023
%P 419-511
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/914/
%R 10.4171/dm/914
%F 10_4171_dm_914
Mahiro Atsuta; Takenori Kataoka. On the minus component of the equivariant Tamagawa number conjecture for $\mathbb{G}_m$. Documenta mathematica, Tome 28 (2023) no. 2, pp. 419-511. doi: 10.4171/dm/914

Cité par Sources :