A Borel–Weil theorem for the quantum Grassmannians
Documenta mathematica, Tome 28 (2023) no. 2, pp. 261-314
Voir la notice de l'article provenant de la source EMS Press
We establish a noncommutative generalisation of the Borel–Weil theorem for the celebrated Heckenberger–Kolb calculi of the quantum Grassmannians. The result is formulated in the framework of quantum principal bundles and noncommutative complex structures, and generalises previous work of a number of authors on quantum projective space. As a direct consequence we get a novel noncommutative differential geometric presentation of the twisted Grassmannian coordinate ring studied in noncommutative projective geometry. A number of applications to the noncommutative Kähler geometry of the quantum Grassmannians are also given.
Classification :
46L87, 81R60, 81R50, 17B37, 16T05
Mots-clés : Quantum groups, noncommutative geometry, quantum flag manifolds, complex geometry
Mots-clés : Quantum groups, noncommutative geometry, quantum flag manifolds, complex geometry
@article{10_4171_dm_913,
author = {Alessandro Carotenuto and Colin Mrozinski and R\'eamonn \'O Buachalla},
title = {A {Borel{\textendash}Weil} theorem for the quantum {Grassmannians}},
journal = {Documenta mathematica},
pages = {261--314},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2023},
doi = {10.4171/dm/913},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/913/}
}
TY - JOUR AU - Alessandro Carotenuto AU - Colin Mrozinski AU - Réamonn Ó Buachalla TI - A Borel–Weil theorem for the quantum Grassmannians JO - Documenta mathematica PY - 2023 SP - 261 EP - 314 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/913/ DO - 10.4171/dm/913 ID - 10_4171_dm_913 ER -
Alessandro Carotenuto; Colin Mrozinski; Réamonn Ó Buachalla. A Borel–Weil theorem for the quantum Grassmannians. Documenta mathematica, Tome 28 (2023) no. 2, pp. 261-314. doi: 10.4171/dm/913
Cité par Sources :