Equivariant Chow–Witt groups and moduli stacks of elliptic curves
Documenta mathematica, Tome 28 (2023) no. 2, pp. 315-368

Voir la notice de l'article provenant de la source EMS Press

We introduce equivariant Chow–Witt groups in order to define Chow–Witt groups of quotient stacks. We compute the Chow–Witt ring of the moduli stack of stable (resp. smooth) elliptic curves, providing a geometric interpretation of the new generators. Along the way, we also determine the Chow–Witt ring of the classifying stack of μ2n​.
DOI : 10.4171/dm/911
Classification : 14F42, 14D23
Mots-clés : Chow–Witt groups, elliptic curves
@article{10_4171_dm_911,
     author = {Andrea Di Lorenzo and Lorenzo Mantovani},
     title = {Equivariant {Chow{\textendash}Witt} groups and moduli stacks of elliptic curves},
     journal = {Documenta mathematica},
     pages = {315--368},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2023},
     doi = {10.4171/dm/911},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/911/}
}
TY  - JOUR
AU  - Andrea Di Lorenzo
AU  - Lorenzo Mantovani
TI  - Equivariant Chow–Witt groups and moduli stacks of elliptic curves
JO  - Documenta mathematica
PY  - 2023
SP  - 315
EP  - 368
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/911/
DO  - 10.4171/dm/911
ID  - 10_4171_dm_911
ER  - 
%0 Journal Article
%A Andrea Di Lorenzo
%A Lorenzo Mantovani
%T Equivariant Chow–Witt groups and moduli stacks of elliptic curves
%J Documenta mathematica
%D 2023
%P 315-368
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/911/
%R 10.4171/dm/911
%F 10_4171_dm_911
Andrea Di Lorenzo; Lorenzo Mantovani. Equivariant Chow–Witt groups and moduli stacks of elliptic curves. Documenta mathematica, Tome 28 (2023) no. 2, pp. 315-368. doi: 10.4171/dm/911

Cité par Sources :