Equivariant Chow–Witt groups and moduli stacks of elliptic curves
Documenta mathematica, Tome 28 (2023) no. 2, pp. 315-368
Voir la notice de l'article provenant de la source EMS Press
We introduce equivariant Chow–Witt groups in order to define Chow–Witt groups of quotient stacks. We compute the Chow–Witt ring of the moduli stack of stable (resp. smooth) elliptic curves, providing a geometric interpretation of the new generators. Along the way, we also determine the Chow–Witt ring of the classifying stack of μ2n.
@article{10_4171_dm_911,
author = {Andrea Di Lorenzo and Lorenzo Mantovani},
title = {Equivariant {Chow{\textendash}Witt} groups and moduli stacks of elliptic curves},
journal = {Documenta mathematica},
pages = {315--368},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2023},
doi = {10.4171/dm/911},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/911/}
}
TY - JOUR AU - Andrea Di Lorenzo AU - Lorenzo Mantovani TI - Equivariant Chow–Witt groups and moduli stacks of elliptic curves JO - Documenta mathematica PY - 2023 SP - 315 EP - 368 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/911/ DO - 10.4171/dm/911 ID - 10_4171_dm_911 ER -
Andrea Di Lorenzo; Lorenzo Mantovani. Equivariant Chow–Witt groups and moduli stacks of elliptic curves. Documenta mathematica, Tome 28 (2023) no. 2, pp. 315-368. doi: 10.4171/dm/911
Cité par Sources :