Slopes of $F$-isocrystals over abelian varieties
Documenta mathematica, Tome 28 (2023) no. 1, pp. 1-9
Cet article a éte moissonné depuis la source EMS Press
We prove that an F-isocrystal over an abelian variety defined over a perfect field of positive characteristic has constant slopes. This recovers and extends a theorem of Tsuzuki for abelian varieties over finite fields. Our proof exploits the theory of monodromy groups of convergent isocrystals.
Classification :
14F30, 11G10, 14K05
Mots-clés : F-isocrystal, slope filtration, abelian variety
Mots-clés : F-isocrystal, slope filtration, abelian variety
@article{10_4171_dm_910,
author = {Marco D{\textquoteright}Addezio},
title = {Slopes of $F$-isocrystals over abelian varieties},
journal = {Documenta mathematica},
pages = {1--9},
year = {2023},
volume = {28},
number = {1},
doi = {10.4171/dm/910},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/910/}
}
Marco D’Addezio. Slopes of $F$-isocrystals over abelian varieties. Documenta mathematica, Tome 28 (2023) no. 1, pp. 1-9. doi: 10.4171/dm/910
Cité par Sources :