Slopes of $F$-isocrystals over abelian varieties
Documenta mathematica, Tome 28 (2023) no. 1, pp. 1-9

Voir la notice de l'article provenant de la source EMS Press

We prove that an F-isocrystal over an abelian variety defined over a perfect field of positive characteristic has constant slopes. This recovers and extends a theorem of Tsuzuki for abelian varieties over finite fields. Our proof exploits the theory of monodromy groups of convergent isocrystals.
DOI : 10.4171/dm/910
Classification : 14F30, 11G10, 14K05
Mots-clés : F-isocrystal, slope filtration, abelian variety
@article{10_4171_dm_910,
     author = {Marco D{\textquoteright}Addezio},
     title = {Slopes of $F$-isocrystals over abelian varieties},
     journal = {Documenta mathematica},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2023},
     doi = {10.4171/dm/910},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/910/}
}
TY  - JOUR
AU  - Marco D’Addezio
TI  - Slopes of $F$-isocrystals over abelian varieties
JO  - Documenta mathematica
PY  - 2023
SP  - 1
EP  - 9
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/910/
DO  - 10.4171/dm/910
ID  - 10_4171_dm_910
ER  - 
%0 Journal Article
%A Marco D’Addezio
%T Slopes of $F$-isocrystals over abelian varieties
%J Documenta mathematica
%D 2023
%P 1-9
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/910/
%R 10.4171/dm/910
%F 10_4171_dm_910
Marco D’Addezio. Slopes of $F$-isocrystals over abelian varieties. Documenta mathematica, Tome 28 (2023) no. 1, pp. 1-9. doi: 10.4171/dm/910

Cité par Sources :