The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields
Documenta mathematica, Tome 28 (2023) no. 2, pp. 369-418
Voir la notice de l'article provenant de la source EMS Press
We prove the Iwasawa-theoretic version of a conjecture of Mazur–Rubin and Sano in the case of elliptic units. This allows us to derive the p-part of the equivariant Tamagawa number conjecture at s = 0 for abelian extensions of imaginary quadratic fields in the semi-simple case and, provided that a standard μ-vanishing hypothesis is satisfied, also in the general case.
@article{10_4171_dm_907,
author = {Dominik Bullach and Martin Hofer},
title = {The equivariant {Tamagawa} number conjecture for abelian extensions of imaginary quadratic fields},
journal = {Documenta mathematica},
pages = {369--418},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2023},
doi = {10.4171/dm/907},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/907/}
}
TY - JOUR AU - Dominik Bullach AU - Martin Hofer TI - The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields JO - Documenta mathematica PY - 2023 SP - 369 EP - 418 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/907/ DO - 10.4171/dm/907 ID - 10_4171_dm_907 ER -
%0 Journal Article %A Dominik Bullach %A Martin Hofer %T The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields %J Documenta mathematica %D 2023 %P 369-418 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/dm/907/ %R 10.4171/dm/907 %F 10_4171_dm_907
Dominik Bullach; Martin Hofer. The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields. Documenta mathematica, Tome 28 (2023) no. 2, pp. 369-418. doi: 10.4171/dm/907
Cité par Sources :