The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields
Documenta mathematica, Tome 28 (2023) no. 2, pp. 369-418

Voir la notice de l'article provenant de la source EMS Press

We prove the Iwasawa-theoretic version of a conjecture of Mazur–Rubin and Sano in the case of elliptic units. This allows us to derive the p-part of the equivariant Tamagawa number conjecture at s = 0 for abelian extensions of imaginary quadratic fields in the semi-simple case and, provided that a standard μ-vanishing hypothesis is satisfied, also in the general case.
DOI : 10.4171/dm/907
Classification : 11R42, 11R23, 11R29
Mots-clés : L-series, Iwasawa theory
@article{10_4171_dm_907,
     author = {Dominik Bullach and Martin Hofer},
     title = {The equivariant {Tamagawa} number conjecture for abelian extensions of imaginary quadratic fields},
     journal = {Documenta mathematica},
     pages = {369--418},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2023},
     doi = {10.4171/dm/907},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/907/}
}
TY  - JOUR
AU  - Dominik Bullach
AU  - Martin Hofer
TI  - The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields
JO  - Documenta mathematica
PY  - 2023
SP  - 369
EP  - 418
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/907/
DO  - 10.4171/dm/907
ID  - 10_4171_dm_907
ER  - 
%0 Journal Article
%A Dominik Bullach
%A Martin Hofer
%T The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields
%J Documenta mathematica
%D 2023
%P 369-418
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/907/
%R 10.4171/dm/907
%F 10_4171_dm_907
Dominik Bullach; Martin Hofer. The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields. Documenta mathematica, Tome 28 (2023) no. 2, pp. 369-418. doi: 10.4171/dm/907

Cité par Sources :