Tori over number fields and special values at $s=1$
Documenta mathematica, Tome 28 (2023) no. 1, pp. 173-260

Voir la notice de l'article provenant de la source EMS Press

We define a Weil-étale complex with compact support for duals (in the sense of the Bloch dualizing cycles complex Zc) of a large class of Z-constructible sheaves on an integral1-dimensional proper arithmetic scheme flat over Spec(Z). This complex can be thought of as computing Weil-étale homology. For those Z-constructible sheaves that are moreover tamely ramified, we define an “additive” complex which we think of as the Lie algebra of the dual of the Z-constructible sheaf. The product of the determinants of the additive and Weil-étale complex is called the fundamental line. We prove a duality theorem which implies that the fundamental line has a natural trivialization, giving a multiplicative Euler characteristic. We attach a natural L-function to the dual of a Z-constructible sheaf; up to a finite number of factors, this L-function is an Artin L-function at s=1. Our main theorem contains a vanishing order formula at s=0 for the L-function and states that, in the tamely ramified case, the special value at s=0 is given up to sign by the Euler characteristic. This generalizes the analytic class number formula for the special value at s=1 of the Dedekind zeta function. In the function field case, this is a theorem of Geisser–Suzuki.
DOI : 10.4171/dm/906
Classification : 14G10, 11G40, 11R42, 14F20, 14F42
Mots-clés : Weil-étale cohomology, special values, L-functions
@article{10_4171_dm_906,
     author = {Adrien Morin},
     title = {Tori over number fields and special values at $s=1$},
     journal = {Documenta mathematica},
     pages = {173--260},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2023},
     doi = {10.4171/dm/906},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/906/}
}
TY  - JOUR
AU  - Adrien Morin
TI  - Tori over number fields and special values at $s=1$
JO  - Documenta mathematica
PY  - 2023
SP  - 173
EP  - 260
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/906/
DO  - 10.4171/dm/906
ID  - 10_4171_dm_906
ER  - 
%0 Journal Article
%A Adrien Morin
%T Tori over number fields and special values at $s=1$
%J Documenta mathematica
%D 2023
%P 173-260
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/906/
%R 10.4171/dm/906
%F 10_4171_dm_906
Adrien Morin. Tori over number fields and special values at $s=1$. Documenta mathematica, Tome 28 (2023) no. 1, pp. 173-260. doi: 10.4171/dm/906

Cité par Sources :