Rational curves and strictly nef divisors on Calabi-Yau threefolds
Documenta mathematica, Tome 27 (2022), pp. 1581-1604 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We give a criterion for a nef divisor D to be semi-ample on a Calabi-Yau threefold X when D3=0=c2​(X)⋅D and c3​(X)=0. As a direct consequence, we show that on such a variety X, if D is strictly nef and ν(D)=1, then D is ample; we also show that if there exists a Cariter divisor D≡0 in the boundary of the nef cone of X, then X contains a rational curve when its topological Euler characteristic is not 0.
DOI : 10.4171/dm/904
Classification : 14E30, 14J30, 14J32
Mots-clés : rational curves, strictly nef divisors, Calabi-Yau threefolds
@article{10_4171_dm_904,
     author = {Haidong Liu and Roberto Svaldi},
     title = {Rational curves and strictly nef divisors on {Calabi-Yau} threefolds},
     journal = {Documenta mathematica},
     pages = {1581--1604},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/904},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/904/}
}
TY  - JOUR
AU  - Haidong Liu
AU  - Roberto Svaldi
TI  - Rational curves and strictly nef divisors on Calabi-Yau threefolds
JO  - Documenta mathematica
PY  - 2022
SP  - 1581
EP  - 1604
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/904/
DO  - 10.4171/dm/904
ID  - 10_4171_dm_904
ER  - 
%0 Journal Article
%A Haidong Liu
%A Roberto Svaldi
%T Rational curves and strictly nef divisors on Calabi-Yau threefolds
%J Documenta mathematica
%D 2022
%P 1581-1604
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/904/
%R 10.4171/dm/904
%F 10_4171_dm_904
Haidong Liu; Roberto Svaldi. Rational curves and strictly nef divisors on Calabi-Yau threefolds. Documenta mathematica, Tome 27 (2022), pp. 1581-1604. doi: 10.4171/dm/904

Cité par Sources :